F-Actin Cytoskeleton Network Self-Organization Through Competition and Cooperation.

Annu Rev Cell Dev Biol

Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA; email:

Published: October 2020

AI Article Synopsis

  • The assembly and disassembly of filamentous actin (F-actin) networks are crucial for vital cellular functions like division and motility, requiring precise organization and timing.
  • Specific actin-binding proteins (ABPs) dictate the characteristics of these networks, including size and dynamics, which influence their distinct roles within the cell.
  • Recent advancements in imaging and experimentation are shedding light on how cells manage multiple F-actin networks simultaneously, enabling them to efficiently carry out essential processes.

Article Abstract

Many fundamental cellular processes such as division, polarization, endocytosis, and motility require the assembly, maintenance, and disassembly of filamentous actin (F-actin) networks at specific locations and times within the cell. The particular function of each network is governed by F-actin organization, size, and density as well as by its dynamics. The distinct characteristics of different F-actin networks are determined through the coordinated actions of specific sets of actin-binding proteins (ABPs). Furthermore, a cell typically assembles and uses multiple F-actin networks simultaneously within a common cytoplasm, so these networks must self-organize from a common pool of shared globular actin (G-actin) monomers and overlapping sets of ABPs. Recent advances in multicolor imaging and analysis of ABPs and their associated F-actin networks in cells, as well as the development of sophisticated in vitro reconstitutions of networks with ensembles of ABPs, have allowed the field to start uncovering the underlying principles by which cells self-organize diverse F-actin networks to execute basic cellular functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675537PMC
http://dx.doi.org/10.1146/annurev-cellbio-032320-094706DOI Listing

Publication Analysis

Top Keywords

f-actin networks
20
f-actin
7
networks
7
f-actin cytoskeleton
4
cytoskeleton network
4
network self-organization
4
self-organization competition
4
competition cooperation
4
cooperation fundamental
4
fundamental cellular
4

Similar Publications

A mechanosensitive circuit of FAK, ROCK, and ERK controls biomineral growth and morphology in the sea urchin embryo.

Proc Natl Acad Sci U S A

January 2025

Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel.

Biomineralization is the utilization of different minerals by a vast array of organisms to form hard tissues and shape them in various forms. Within this diversity, a common feature of all mineralized tissues is their high stiffness, implying that mechanosensing could be commonly used in biomineralization. Yet, the role of mechanosensing in biomineralization is far from clear.

View Article and Find Full Text PDF

Mid-infrared photoacoustic microscopy can capture biochemical information without staining. However, the long mid-infrared optical wavelengths make the spatial resolution of photoacoustic microscopy significantly poorer than that of conventional confocal fluorescence microscopy. Here, we demonstrate an explainable deep learning-based unsupervised inter-domain transformation of low-resolution unlabeled mid-infrared photoacoustic microscopy images into confocal-like virtually fluorescence-stained high-resolution images.

View Article and Find Full Text PDF

These protocols describe a detailed method to determine the DNA damage and F-actin and microtubule defects of metaphase II oocytes caused by hexavalent chromium, Cr(VI), an endocrine disrupting chemical (EDC). The protocol provides systematic steps to determine protein expression encoded by pluripotency proteins such as Oct4, Nanog, and Cdx2 during early embryonic development. Occupational or environmental exposure to EDCs has significantly increased infertility in both men and women.

View Article and Find Full Text PDF

LASP1 inhibits the formation of NETs and alleviates acute pancreatitis by stabilizing F-actin polymerization in neutrophils.

Biochem Biophys Res Commun

January 2025

Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Yangzhou University, Kunshan, Suzhou, Jiangsu, China. Electronic address:

Background: Neutrophil extracellular traps (NETs) play a significant role in the development of acute pancreatitis (AP). The actin-binding protein LASP1 regulates proteins associated with the cytoskeleton, yet its precise involvement in NETs and AP remains to be elucidated.

Methods: To investigate the role of LASP1 in NETs and AP, several bioinformatics methods, such as weighted gene co-expression network analysis (WGCNA), differential analysis, and least absolute shrinkage and selection operator (LASSO) regression, were utilized to screen for feature genes based on the Gene Expression Omnibus (GEO) dataset.

View Article and Find Full Text PDF

Background: The challenge of expanding haematopoietic stem/progenitor cells (HSPCs) in vitro has limited their clinical application. Human hair follicle mesenchymal stem cells (hHFMSCs) can be reprogrammed to generate intermediate stem cells by transducing OCT4 (hHFMSCs) and pre-inducing with FLT3LG/SCF, and differentiated into erythrocytes. These intermediate cells exhibit gene expression patterns similar to pre-HSCs, making them promising for artificial haematopoiesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!