A pair of new macrocyclic spermidine alkaloids, (+)-()-scocycamide and (-)-()-scocycamide, were isolated from the roots of . Their structures were established by extensive spectroscopic data, electronic circular dichroism analyses, and chemical synthesis. They featured a unique 6/18 fused bicyclic framework with spermidine and catechol units, representing a new subtype of natural spermidine alkaloids. A plausible biosynthetic pathway was also proposed. They inhibited butyrylcholinesterase and exhibited antioxidant capacity, suggesting beneficial constituents against Alzheimer's disease and oxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.0c02838DOI Listing

Publication Analysis

Top Keywords

pair macrocyclic
8
spermidine alkaloids
8
scocycamides pair
4
macrocyclic dicaffeoylspermidines
4
dicaffeoylspermidines butyrylcholinesterase
4
butyrylcholinesterase inhibition
4
inhibition antioxidation
4
antioxidation activity
4
activity roots
4
roots pair
4

Similar Publications

Designing molecular receptors that bind anions in water is a significant challenge, and an even greater difficulty lies in using these receptors to remove anions from water without resorting to the hazardous liquid-liquid extraction approach. We here demonstrate an effective and synthetically simple strategy toward these goals by exploiting ion-pair assembly of macrocycles. Our anion binding ensemble consists of an octa-chloro tetra-urea macrocyclic anion receptor (ClTU), which forms water-dispersible aggregates, and a tetra-cationic fluorescent dye 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin (TMPyP4), which provides Coulombic stabilization and fluorescence reporting of anion binding in an ion-pair assembly.

View Article and Find Full Text PDF

Distortions in the porphyrin core from planarity can trigger a unique structure-property relationship, imparting its basicity, chemical stability, redox potential, and excited-state energetics, among other properties. The colour change promoted by such distortion is signed by red shifts in its electronic absorption spectra. The adsorption of guest -substituted free-base porphyrin species onto inorganic hosts, such as clay minerals (layered aluminium or magnesium silicates), is known to further promote colour changes.

View Article and Find Full Text PDF

This work explores the use of a cross-shaped organic framework that is used as a template for the investigation of multi-functionalized chromophores. We report the design and synthesis of a universal cross-shaped building block bearing two bromines and two iodines on its peripheral positions. The template can be synthesized on a gram scale in a five-step reaction comprising an oxidative homo-coupling macro-cyclization.

View Article and Find Full Text PDF

Tunability in Heterobimetallic Complexes Featuring an Acyclic "Tiara" Polyether Motif.

Inorg Chem

January 2025

Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States.

Both cyclic "crown" and acyclic "tiara" polyethers have been recognized as useful for the binding of metal cations and enabling the assembly of multimetallic complexes. However, the properties of heterobimetallic complexes built upon acyclic polyethers have received less attention than they deserve. Here, the synthesis and characterization of a family of eight redox-active heterobimetallic complexes that pair a nickel center with secondary redox-inactive cations (K, Na, Li, Sr, Ca, Zn, La, and Lu) bound in acyclic polyether "tiara" moieties are reported.

View Article and Find Full Text PDF

Selective lithium halide ion-pair sensing by a dynamic metalloporphyrin [2]rotaxane.

Dalton Trans

December 2024

Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.

Article Synopsis
  • A new type of [2]rotaxane is developed that features a zinc(II) metalloporphyrin axle and a special macrocycle, which can effectively recognize and sense lithium halide ion pairs through optical methods.
  • Research using H NMR and UV-visible absorption indicates that the interaction between the macrocycle and the zinc(II) axle leads to a significant change in the rotaxane's structure.
  • Titration experiments reveal that when lithium halide pairs bind to the system, they disrupt the mechanical bond, allowing the macrocycle to move and enhance the recognition and sensing capabilities of lithium halide salts.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!