Plasmonic Microgels for Raman-Based Molecular Detection Created by Simultaneous Photoreduction and Photocross-linking.

ACS Appl Mater Interfaces

Department of Chemical and Biomolecular Engineering (BK21+ Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.

Published: October 2020

Molecular detection in complex mixtures is of great importance in biomedical diagnosis, food safety, and environmental monitoring. Although surface-enhanced Raman scattering serves as one of the most promising detection methods, metal surfaces are prone to contamination, making the direct detection of small molecules in mixtures elusive. Metal nanoparticle-loaded hydrogels have been used for the exclusion of large adhesive molecules and direct detection of small molecules. Here, we design microgels containing highly concentrated gold nanoparticles through the simultaneous formation of hydrogel and gold nanoparticles in emulsion droplets. Monodisperse water-in-oil droplets are microfluidically prepared to contain a gold precursor, hydrogel precursor, and photoinitiator. Upon ultraviolet irradiation, a hydrogel is gradually formed in the drop by photocross-linking at which gold nanoparticles are synthesized and grown by photo and thermal reduction. The synthesis provides the uniform distribution of gold nanoparticles at very high concentrations without aggregation, which is otherwise very difficult to achieve. Using the microgels, small molecules in albumin solutions can be detected by Raman measurement with high signal sensitivity and reproducibility in the absence of interruption from albumin. As a proof of concept, we demonstrate the direct detection of pyocyanin, a biomarker for infection spiked in unpurified saliva.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c14059DOI Listing

Publication Analysis

Top Keywords

gold nanoparticles
16
direct detection
12
small molecules
12
molecular detection
8
detection small
8
detection
6
gold
5
plasmonic microgels
4
microgels raman-based
4
raman-based molecular
4

Similar Publications

Sensitivity-enhanced competitive lateral flow immunoassays by polycaprolactone electrospun stacking pad: Estrous determination in whole blood.

Biosens Bioelectron

December 2024

Nanobiointeractions&Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163, Genova, Italy. Electronic address:

Lateral flow assays (LFA) are widely adopted in point-of-care diagnostics across a spectrum of applications, due to their simplicity of use and cost-effectiveness. However, in complex biological matrices (e.g.

View Article and Find Full Text PDF

Strongylus vulgaris, a devastating parasitic nematode in equids, causes life-threatening verminous aneurysms that are challenging to diagnose early. This study pioneered integrating nanotechnology into an indirect enzyme-linked immunosorbent assay (i-ELISA) system to enhance the sensitivity and specificity for detecting S. vulgaris larval antigens in equine serum samples, with PCR confirmation of the species.

View Article and Find Full Text PDF

A dual-signal aptamer-based assay utilizing colorimetric and fluorescence techniques was developed for the determination of zearalenone (ZEN). The CdTe quantum dots, serving as the fluorescent signal source, were surface-modified onto FeO@SiO and subsequently functionalized with the aptamer. The COF-Au was modified with complementary chain, which possessed peroxide (POD)-like enzyme properties, and could catalyze the peroxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to ox TMB, resulting in the generation of colorimetric signals.

View Article and Find Full Text PDF

Chiral molecules are ubiquitous in nature and biological systems, where the unique optical and physical properties of chiral nanoparticles are closely linked to their shapes. Synthesizing chiral plasmonic nanomaterials with precise structures and tunable sizes is essential for exploring their applications. This study presents a method for growing three-dimensional chiral gold nanoflowers (Au NFs) derived from trisoctahedral (TOH) nanocrystals using D-cysteine and L-cysteine as chiral inducers.

View Article and Find Full Text PDF

Sensing Platform Based on Gold Nanoclusters and Nanoporous Anodic Alumina for Preeclampsia Detection.

Biosensors (Basel)

December 2024

Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University (URV), 43007 Tarragona, Spain.

Preeclampsia is a pregnancy-specific hypertensive syndrome recognized as the leading cause of maternal and fetal morbidity worldwide. Early diagnosis is crucial for mitigating its adverse effects, and recent investigations have identified endoglin as a potential biomarker for this purpose. Here, we present the development of a hybrid biosensor platform for the ultrasensitive detection of endoglin, aimed at enabling the early diagnosis of preeclampsia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!