Targeting HER2 in Breast Cancer: Latest Developments on Treatment Sequencing and the Introduction of Biosimilars.

Drugs

Department of Medical Oncology, British Columbia Cancer, 600 W. 10th Avenue, Vancouver, BC, V5Z 4E6, Canada.

Published: November 2020

Approximately 20% of all breast cancers overexpress the human epidermal growth factor receptor 2 (HER2). Targeting breast cancer through this vital oncogenic protein has been a major step towards improved patient outcomes. Today, several anti-HER2 agents are in clinical use including: the monoclonal antibodies trastuzumab and pertuzumab; the small molecule inhibitors lapatinib, neratinib, and tucatinib; and the antibody-drug conjugates ado-trastuzumab emtansine and trastuzumab deruxtecan, in some jurisdictions. In addition, several trastuzumab biosimilars have recently been granted regulatory approval in North America and the EU, and are enhancing patient access to HER2-directed therapy. The various agents differ greatly in their side-effect profiles and approved indications, from neoadjuvant and adjuvant use in early disease, to first- and later-line use in metastatic disease. This review discusses the current treatment recommendations for the use of anti-HER2 agents alone and in combination, examines the latest advances in HER2-targeted drugs and how they may be best applied in clinical practice, and provides guidance on optimal sequencing of the growing array of therapeutic options for HER2-positive breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s40265-020-01411-yDOI Listing

Publication Analysis

Top Keywords

breast cancer
12
anti-her2 agents
8
targeting her2
4
breast
4
her2 breast
4
cancer latest
4
latest developments
4
developments treatment
4
treatment sequencing
4
sequencing introduction
4

Similar Publications

Purpose: To assess trial-level surrogacy value for overall survival (OS) of the pathologic complete response (pCR) and invasive disease-free survival (iDFS) in randomized clinical trials (RCTs) for early breast cancer (BC).

Methods: Individual patient data of neoadjuvant RCTs with available data on pCR, iDFS, and OS were included in the analysis. We used the coefficient of determination from weighted linear regression models to quantify the association between treatment effects on OS and on the surrogate end points.

View Article and Find Full Text PDF

Breast and cervical cancers are the most prevalent diagnosed in women worldwide, significantly contributing to maternal morbidity and mortality. We examined socio-demographic and behavioral factors associated with breast and cervical cancer screening among Cambodian women aged 15-49 years old. We analyzed women's data from the 2022 Cambodia Demographic and Health Survey (CDHS).

View Article and Find Full Text PDF

Background: Cancer patients have up to a 3-fold higher risk for cardiovascular disease (CVD) than the general population. Traditional CVD risk scores may be less accurate for them. We aimed to develop cancer-specific CVD risk scores and compare them with conventional scores in predicting 10-year CVD risk for patients with breast cancer (BC), colorectal cancer (CRC), or lung cancer (LC).

View Article and Find Full Text PDF

Chitosan-Functionalized Fluorescent Calcium Carbonate Nanoparticle Loaded with Methotrexate: Future Theranostics for Triple Negative Breast Cancer.

ACS Biomater Sci Eng

January 2025

Nano 2 Micro Material Design Lab, Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.

Herein, fluorescent calcium carbonate nanoclusters encapsulated with methotrexate (Mtx) and surface functionalized with chitosan (25 nm) (@Calmat) have been developed for the imaging and treatment of triple-negative breast cancer (TNBC). These biocompatible, pH-sensitive nanoparticles demonstrate significant potential for targeted therapy and diagnostic applications. The efficacy of nanoparticles (NPs) was evaluated in MDA-MB-231 TNBC cell lines.

View Article and Find Full Text PDF

Antiproliferative activity of a series of copper(II) complexes derived from a furan-containing -acylhydrazone: monomers, dimers, charge status, and cell mechanistic studies on triple negative breast cancer cells.

Dalton Trans

January 2025

CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 No. 1465, La Plata (1900), Argentina.

In this work, we evaluated the anticancer activity of compounds 1 (mononuclear) and 2 (dinuclear) copper(II) coordination compounds derived from the ligand 5-methylsalicylaldehyde 2-furoyl hydrazone (H2L) over MDA-MB-231 Triple-negative breast cancer (TNBC) cells, and compared their activities with that of a newly synthesized, protonated, dinuclear analogue of 2 (complex 3). Here, we report the synthesis of compound 3 and it has been characterized in the solid state (X-ray diffraction, FTIR) and in solution (EPR, UV-Vis, ESI) as well as its electrochemical profile. Complexes 1-3 impaired cell viability from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!