Free-living planktonic single bacterial strain can decolorize Congo red (CR) but often produces the carcinogenic, mutagenic and genotoxic aromatic amines. Planktonic single and bacterial consortia are more susceptible to toxic pollutants than their biofilm counterparts. In the present study, four biofilm consortia (C1 = Vitreoscilla sp. ENSG301, Acinetobacter lwoffii ENSG302, Klebsiella pneumoniae ENSG303 and Pseudomonas fluorescens ENSG304, C2 = Escherichia coli ENSD101, Enterobacter asburiae ENSD102 and E. ludwigii ENSH201, C3 = E. asburiae ENSD102, Vitreoscilla sp. ENSG301 and Bacillus thuringiensis ENSW401, and C4 = E. coli ENSD101, E. ludwigii ENSH201 and B. thuringiensis ENSW401) were prepared and assessed for bioremediation of CR. All these biofilm consortia remarkably decolorized (96.9 to 99.5%) the CR (100 mg/L) in static condition within 72 h incubation at 28 °C. These consortia also synthesized significantly more intracellular azoreductase and laccase enzyme than extracellular of these enzymes. UV-Vis spectral analysis revealed that the major peak at 478 nm wavelength of CR was completely disappeared. FTIR analysis showed several major peaks along with azo bonds are completely or partly disappeared, deformed or widened. Chemical oxygen demand was reduced by 86.4, 85.5, 87.0 and 86.2% by C1, C2, C3 and C4, respectively. Accordingly, biodegraded metabolites of CR by different biofilm consortia did not inhibit the germination of wheat seeds and bacterial growth. Thus, these biofilm consortia can be applied in bioremediation of wastewater containing CR for safe disposal into the environment. To our knowledge, this is the first report on degradation and detoxification of aqueous solution containing CR by bacterial biofilm consortia.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-020-02044-1DOI Listing

Publication Analysis

Top Keywords

biofilm consortia
24
bacterial biofilm
8
consortia
8
congo red
8
planktonic single
8
single bacterial
8
coli ensd101
8
asburiae ensd102
8
ludwigii ensh201
8
thuringiensis ensw401
8

Similar Publications

Deciphering intricate associations between vigorous development and novel metabolic preferences of partial denitrification/anammox granular consortia within mainstream municipal wastewater.

Bioresour Technol

January 2025

National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China. Electronic address:

There is limited understanding of the granular partial denitrification/anammox (PD/A) microbiota and metabolic hierarchy specific to municipal wastewater treatment, particularly concerning the multi-mechanisms of functional differentiation and granulation tendencies under high-loading shocks. Therefore, this study utilized fragmented mature biofilm as the exclusive inoculum to rapidly establish a granular PD/A system. Following long-term feeding with municipal wastewater, PD/A process reached a total nitrogen removal efficiency of 97.

View Article and Find Full Text PDF

Genome Insights into Beneficial Microbial Strains Composing SIMBA Microbial Consortia Applied as Biofertilizers for Maize, Wheat and Tomato.

Microorganisms

December 2024

Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, 00123 Rome, RM, Italy.

For the safe use of microbiome-based solutions in agriculture, the genome sequencing of strains composing the inoculum is mandatory to avoid the spread of virulence and multidrug resistance genes carried by them through horizontal gene transfer to other bacteria in the environment. Moreover, the annotated genomes can enable the design of specific primers to trace the inoculum into the soil and provide insights into the molecular and genetic mechanisms of plant growth promotion and biocontrol activity. In the present work, the genome sequences of some members of beneficial microbial consortia that have previously been tested in greenhouse and field trials as promising biofertilizers for maize, tomato and wheat crops have been determined.

View Article and Find Full Text PDF

Dental implant coronal surfaces designed with the primary goal of maintaining crestal bone levels may also promote bacterial adhesion, leading to soft tissue inflammation and peri-implant bone loss. Achieving an optimal surface roughness that minimizes bacterial adhesion while preserving crestal bone is crucial. It is hypothesized that a specific threshold surface roughness value may exist below which, and above which, initial bacterial adhesion does not statistically change.

View Article and Find Full Text PDF
Article Synopsis
  • Signal transduction is key for communication and response in microbial communities, allowing them to adapt to environmental changes and establish structures for collective behaviors.
  • Microbial communication occurs through methods like quorum sensing, biofilm formation, and chemotaxis, which help coordinate activities, enhance resource use, and improve resilience against stress.
  • Understanding these signaling processes, especially in synthetic microbial consortia, has important implications for biotechnology, including biosensors, biodegradation, and waste management.
View Article and Find Full Text PDF

Hydraulic fracturing has unlocked vast amounts of hydrocarbons trapped within unconventional shale formations. This large-scale engineering approach inadvertently introduces microorganisms into the hydrocarbon reservoir, allowing them to inhabit a new physical space and thrive in the unique biogeochemical resources present in the environment. Advancing our fundamental understanding of microbial growth and physiology in this extreme subsurface environment is critical to improving biofouling control efficacy and maximizing opportunities for beneficial natural resource exploitation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!