Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Glypican-1 and its heparan sulfate (HS) chains play important roles in modulating many biological processes including growth factor signaling. Glypican-1 is bound to a membrane surface via a glycosylphosphatidylinositol (GPI)-anchor. In this study, we used all-atom molecular modeling and simulation to explore the structure, dynamics, and interactions of GPI-anchored glypican-1, three HS chains, membranes, and ions. The folded glypican-1 core structure is stable, but has substantial degrees of freedom in terms of movement and orientation with respect to the membrane due to the long unstructured C-terminal region linking the core to the GPI-anchor. With unique structural features depending on the extent of sulfation, high flexibility of HS chains can promote multi-site interactions with surrounding molecules near and above the membrane. This study is a first step toward all-atom molecular modeling and simulation of the glycocalyx, as well as its modulation of interactions between growth factors and their receptors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8176774 | PMC |
http://dx.doi.org/10.1093/glycob/cwaa092 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!