This work describes a strategy to produce circularly polarized thermally activated delayed fluorescence (CP-TADF). A set of two structurally similar organic emitters and are constructed, whose spiro architectures containing asymmetric donors result in chirality. Upon grafting within the spiro frameworks, the donor and acceptor are fixed proximally in a face-to-face manner. This orientation allows intramolecular through-space charge transfer (TSCT) to occur in both emitters, leading to TADF properties. The donor units in and have a sulfur and oxygen atom, respectively; such a subtle difference has great impacts on their photophysical, chiroptical, and electroluminescence (EL) properties. exhibits greatly enhanced EL performance in doped organic light-emitting diodes, with external quantum efficiency (EQE) up to 23.1%, owing to the concurrent manipulation of highly photoluminescent quantum efficiency (PLQY, ∼90%) and high exciton utilization. As a comparison, the relatively larger sulfur atom in introduces heavy atom effects and leads to distortion of the molecular backbone that lengthens the donor-acceptor distance. thus has lower PLQY and faster nonradiative decay rate. The collective consequence is that the EQE value of , i.e., 12.5%, is much lower than that of . The chirality of these two spiro emitters results in circularly polarized luminescence. Because has a more distorted molecular architecture than , the luminescence dissymmetry factor (||) of circularly polarized luminescence of one enantiomer of the former, namely, either or , is almost twice that of /. Moreover, the CP organic light-emitting diodes (CP-OLEDs) show obvious circularly polarized electroluminescence (CPEL) signals with of 1.30 × 10 and 1.0 × 10 for and , respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.0c08980 | DOI Listing |
ACS Nano
January 2025
Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China.
Circular differential scattering (CDS) spectroscopy has been developed as a powerful method for the characterization of the optical activity of individual plasmonic nanostructures and their complexes with chiral molecules. However, standard measurement setups often result in artifacts that have long raised concerns on the interpretation of spectral data. In fact, the detection limit of CDS setups is constrained by the high level of artifacts, to ±10%.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Physics, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan.
We have found that surface superstructures made of "monolayer alloys" of Tl and Pb on Si(111), having giant Rashba effect, produce nonreciprocal spin-polarized photocurrent via circular photogalvanic effect (CPGE) by obliquely shining circularly polarized near-infrared (IR) light. CPGE is here caused by the injection of in-plane spin into spin-split surface-state bands, which is observed only on Tl-Pb alloy layers but not on single-element Tl nor Pb layers. In the Tl-Pb monolayer alloys, despite their monatomic thickness, the magnitude of CPGE is comparable to or even larger than the cases of many other spin-split thin-film materials.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Zhengzhou University, College of Chemistry, No 100. Kexue Avenue, 450001, Zhengzhou, CHINA.
Chiral metal organic cage compounds with excellent circularly polarized luminescent performance have broad application prospects in many fields. Herein, two lanthanide complexes with luminescent properties in the form of racemic hexagonal octahedral cages were synthesized using a tri (β-diketone) ligand. Eu6(C21H6F15O6)8(H2O)6 exhibited red light emission with high quantum yields of 61%.
View Article and Find Full Text PDFDalton Trans
January 2025
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, China.
Herein, we report the influence of solvent on the self-assembly of a dinuclear helicate, (NMe)[Eu(LR)]. A multiple species mixture with the chemical composition of [Eu(LR)] present in CHCN can be transformed into a helicate upon increasing the content of CHCl, accompanied by a significant enhancement in circularly polarized luminescence activity.
View Article and Find Full Text PDFNat Mater
January 2025
Institute of Electrical and Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Chirality, a basic property of symmetry breaking, is crucial for fields such as biology and physics. Recent advances in the study of chiral systems have stimulated interest in the discovery of symmetry-breaking states that enable exotic phenomena such as spontaneous gyrotropic order and superconductivity. Here we examine the interaction between light chirality and electron spins in indium selenide and study the effect of magnetic field on emerging tunnelling photocurrents at the Van Hove singularity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!