To meet the growing electricity demand, China's power generation sector has become an increasingly large source of air pollutants. Specific control policymaking needs an inventory reflecting the overall, heterogeneous, time-varying features of power plant emissions. Due to the lack of comprehensive real measurements, existing inventories rely on average emission factors that suffer from many assumptions and high uncertainty. This study is the first to develop an inventory of particulate matter (PM), SO and NO emissions from power plants using systematic actual measurements monitored by China's continuous emission monitoring systems (CEMS) network over 96-98% of the total thermal power capacity. With nationwide, source-level, real-time CEMS-monitored data, this study directly estimates emission factors and absolute emissions, avoiding the use of indirect average emission factors, thereby reducing the level of uncertainty. This dataset provides plant-level information on absolute emissions, fuel uses, generating capacities, geographic locations, etc. The dataset facilitates power emission characterization and clean air policy-making, and the CEMS-based estimation method can be employed by other countries seeking to regulate their power emissions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536431 | PMC |
http://dx.doi.org/10.1038/s41597-020-00665-1 | DOI Listing |
BMC Rheumatol
January 2025
Department of Rheumatology, Overton Brooks VA Medical Center, Shreveport, LA, USA.
Background: Dermatomyositis is a chronic inflammatory condition affecting muscles and skin, often associated with an increased risk of cancer. Specific autoantibodies, including anti-TIF1 (Transcription Intermediary Factor 1), have been linked to this risk. We present a case of dermatomyositis in a male patient positive for anti-TIF1 antibodies, subsequently diagnosed with squamous cell carcinoma of the tonsil, a novel association not previously documented.
View Article and Find Full Text PDFZhonghua Yi Xue Za Zhi
January 2025
Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing100730, China.
To compare the diagnostic value of fluorine 18-labelled prostate-specific membrane antigen (PSMA) PET/CT PRIMARY score and PSMA expression score for clinically significant prostate cancer (csPCa). The data of 70 patients with prostate cancer who underwent radical prostatectomy at Beijing Hospital from February 1, 2019 to February 29, 2024 were retrospectively analyzed. All patients underwent whole body F-PSMA PET/CT examination before surgery and pathological large sections of prostate specimens were made after surgery.
View Article and Find Full Text PDFWater Res
January 2025
School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4067, Australia.
Urban water utilities are significant energy users and also key actors in decarbonisation. However, the integrated perspective of urban water supply and wastewater system emissions, the relevant driving forces, and the boundaries of inclusions or exclusions, are rarely discussed. This is due to widely disaggregated data, and complex issues regarding the boundary of the system being investigated.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Civil Engineering, City College of New York, New York, NY 10031, United States.
Odor emissions, primarily from anthropogenic activities like waste treatment and industrial processes, pose significant challenges in urban areas, particularly near water resource recovery facilities. While these emissions are generally not toxic, they can adversely affect community wellbeing and investment, prompting stricter regulations in some regions. For example, New York State's hydrogen sulfide guidelines are more stringent than federal standards.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China.
Soil nitrogen (N) transformations control N availability and plant production and pose environmental concerns when N is lost, raising issues such as soil acidification, water contamination, and climate change. Former studies suggested that soil N cycling is chiefly regulated by microbial activity; however, emerging evidence indicates that this regulation is disrupted by heavy metal (HM) contamination, which alters microbial communities and enzyme functions critical to N transformations. Environmental factors like soil organic carbon, soil texture, water content, temperature, soil pH, N fertilization, and redox status play significant roles in modulating the response of soil N cycling to HM contamination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!