Fresh and clean water is consistently depleting and becoming a serious problem with rapid increases in population, so seawater desalination technology has captured global attention. For an efficient desalination process, this work proposes a novel, nanofibrous, thin-film composite membrane (NF-TFC) based on the deposition of the nanofibrous active layer of a blend of chitosan (CS) and poly (vinylpyrrolidone) (PVP) crosslinked with maleic acid on a 3-triethoxysilylpropylamine functionalized cellulose acetate substrate. FTIR analysis demonstrated the development of chemical and physical interactions and confirmed the incorporation of functional groups present in the NF-TFC. Scanning electron microscopy (SEM) micrographs depict the fibrous structure of the active layers. The reverse osmosis (RO) desalination characteristics of NF-TFC membranes are elevated by increasing the concentration of the crosslinker in a CS/PVP blend. Cellulose acetate (CA)-S4 attained an optimal salt rejection of 98.3% and permeation flux of 42.9 L/mh, suggesting that the NF-TFC membranes could be favorable for seawater desalination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582265 | PMC |
http://dx.doi.org/10.3390/ijms21197338 | DOI Listing |
Water Res
December 2024
Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
It has been demonstrated that chlorine predominately reacts with phenolic compounds through an electrophilic aromatic substitution, yielding chlorinated phenols. Previous studies showed that copper oxide (CuO), a water pipe corrosion product, can catalytically enhance the reactivity of chlorine and its disproportionation. In this study, kinetics and mechanisms for the reactions of chlorine with phenolic compounds in the presence of CuO were investigated.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
December 2024
Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA. Electronic address:
The acquisition of ferrous iron (Fe) is crucial for the survival of many pathogenic bacteria living within acidic and/or anoxic conditions such as Vibrio cholerae, the causative agent of the disease cholera. Bacterial pathogens utilize iron as a cofactor to drive essential metabolic processes, and the primary prokaryotic Fe acquisition mechanism is the ferrous iron transport (Feo) system. In V.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China.
The composition of urinary metabolites can reflect the physiological state of animals. Investigating the alterations in urine metabolomics during the estrus stage can provide valuable insights for enhancing the efficacy of estrus monitoring. This study aimed to perform an analysis of urinary metabolomics in female giant pandas, specifically examining the variations in specific metabolites across different estrous stages, namely, diestrus, proestrus, estrus, and metestrus.
View Article and Find Full Text PDFChemosphere
December 2024
Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA, 98195-2700, USA.
Interactions between metal cations, notably Cu(II), and humic substances (HS) affect their mobility, bioavailability, and toxicity. This necessitates a molecular-level determination of the nature of HS functional groups binding Cu(II) (Cu-HS) and effects of pH on them. This study investigates the pH effects on the spectroscopic and structural properties of the complexes of Cu(II) with HS and representative model compounds using differential absorbance spectroscopy (DAS), examination of the properties of the d-d transition band characteristic for Cu(II) ions, and quantum chemical (QC) calculations.
View Article and Find Full Text PDFHeliyon
November 2024
School of Pharmacy, Bandung Institute of Technology, Indonesia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!