Ocean acidification (OA) poses a major threat to marine ecosystems and shellfish aquaculture. A promising mitigation strategy is the identification and breeding of shellfish varieties exhibiting resilience to acidification stress. We experimentally compared the effects of OA on two populations of red abalone (), a marine mollusc important to fisheries and global aquaculture. Results from our experiments simulating captive aquaculture conditions demonstrated that abalone sourced from a strong upwelling region were tolerant of ongoing OA, whereas a captive-raised population sourced from a region of weaker upwelling exhibited significant mortality and vulnerability to OA. This difference was linked to population-specific variation in the maternal provisioning of lipids to offspring, with a positive correlation between lipid concentrations and survival under OA. This relationship also persisted in experiments on second-generation animals, and larval lipid consumption rates varied among paternal crosses, which is consistent with the presence of genetic variation for physiological traits relevant for OA survival. Across experimental trials, growth rates differed among family lineages, and the highest mortality under OA occurred in the fastest growing crosses. Identifying traits that convey resilience to OA is critical to the continued success of abalone and other shellfish production, and these mitigation efforts should be incorporated into breeding programs for commercial and restoration aquaculture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7584875PMC
http://dx.doi.org/10.1073/pnas.2006910117DOI Listing

Publication Analysis

Top Keywords

ocean acidification
8
aquaculture
5
evolved differences
4
differences energy
4
energy metabolism
4
metabolism growth
4
growth dictate
4
dictate impacts
4
impacts ocean
4
abalone
4

Similar Publications

Response of the photosynthetic physiology of Ulva lactuca to Cu toxicity under ocean acidification.

Aquat Toxicol

December 2024

Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang 222005, PR China.

Ocean acidification can significantly affect the physiological performance of macroalgae. While copper (Cu) is an essential element for macroalgae and has been extensively studied, the interactive effects of ocean acidification and Cu on these organisms remain less understood. In this study, we measured the photosynthetic characteristics of Ulva lactuca exposed to varying Cu concentrations at two CO levels (415 ppmv, low concentration; 1000 ppmv, high concentration).

View Article and Find Full Text PDF

Marine microplastic is pervasive, polluting the remotest ecosystems including the Southern Ocean. Since this region is already undergoing climatic changes, the additional stress of microplastic pollution on the ecosystem should not be considered in isolation. We identify potential hotspot areas of ecological impact from a spatial overlap analysis of multiple data sets to understand where marine biota are likely to interact with local microplastic emissions (from ship traffic and human populations associated with scientific research and tourism).

View Article and Find Full Text PDF

Cellular and genetic responses of Phaeodactylum tricornutum to seawater acidification and copper exposure.

Mar Environ Res

December 2024

Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study, Shenzhen University, Shenzhen, China. Electronic address:

The ongoing decline in seawater pH, driven by the absorption of excess atmospheric CO, represents a major environmental issue. This reduction in pH can interact with metal pollution, resulting in complex effects on marine phytoplankton. In this study, we examined the combined impacts of seawater acidification and copper (Cu) exposure on the marine diatom Phaeodactylum tricornutum.

View Article and Find Full Text PDF

This study aimed to assess the interactive effects of CO-driven acidification, temperature rise, and PAHs toxicity on meiobenthic communities. Laboratory microcosms were established in a full factorial experimental design, manipulating temperature (25 °C and 27 °C), pH (8.1 and 7.

View Article and Find Full Text PDF

Low pH Means More Female Offspring: A Multigenerational Plasticity in the Sex Ratio of Marine Bivalves.

Environ Sci Technol

December 2024

The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, Hong Kong, China.

Global changes can profoundly affect the sex determination and reproductive output of marine organisms, disrupting the population structure and ecosystems. High COdriven low pH in the context of ocean acidification (OA) has been shown to severely affect various calcifiers, but less is known about the extent to which low pH influences sex determination and reproduction of marine organisms, particularly mollusks. This study is the first to report a biased sex ratio over multiple generations toward females, driven by exposure to high CO-induced low pH environments, using the ecologically and economically important Portuguese oyster () as a model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!