Background: Over the past ten years, regenerative medicine has focused on the regeneration and the reconstruction of damaged, diseased, or lost tissues and organs. Skin, being the largest organ in the human body, had attained a good attraction in this field. Delayed wound healing is one of the most challenging clinical medicine complications. This study aimed to evaluate the collagen chitosan scaffold's effect alone, or enriched with either bone marrow-derived mesenchymal stem cells (BM-MSCs) or their secreted extracellular vesicles (EVs) on the duration and quality of skin wound healing.

Methods: A full-thickness skin wound was induced on the back of 32 adult male Sprague-Dawley rats. The wounds were either covered with collagen chitosan scaffolds alone, scaffolds enriched with stem cells, or extracellular vesicles. Unprotected wounds were used as control. Healing duration, collagen deposition and alignment, CD 68+ macrophage count, and functional tensile strength of healed skin were assessed (α = 0.05, n = 8).

Results: The rate of skin healing was significantly accelerated in all treated groups compared to the control. Immuno-histochemical assessment of CD68+ macrophages showed enhanced macrophages count, in addition to higher collagen deposition and better collagen alignment in EVs and BM-MSCs treated groups compared to the control group. Higher tensile strength values reflected the better collagen deposition and alignment for these groups. EVs showed higher amounts of collagen deposition and better alignment compared to MSCs treated group.

Conclusion: The collagen chitosan scaffolds enriched with MSCs or their EVs improved wound healing and improved the quantity and remodeling of collagen with a better assignment to EVs.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0885328220963920DOI Listing

Publication Analysis

Top Keywords

collagen chitosan
16
collagen deposition
16
stem cells
12
extracellular vesicles
12
skin wound
12
wound healing
12
collagen
10
bone marrow-derived
8
marrow-derived mesenchymal
8
mesenchymal stem
8

Similar Publications

Keratin/chitosan film promotes wound healing in rats with combined radiation-wound injury.

J Mater Sci Mater Med

January 2025

Department of Nuclear Medicine, Chongqing University Cancer Hospital, No. 181 HanYu St, Shapingba District, Chongqing, 400030, PR China.

Human hair keratin, a natural protein derived from human hair, has emerged prominently in the field of wound repair, showcasing its unique regenerative capabilities and extensive application potential. However, it is a challenge for the keratin to efficiently therapy the impaired wound healing, such as combined radiation-wound injury. Here, we report a keratin/chitosan (KRT/CS) film for skin repair of chronic wounds in in rats with combined radiation-wound injury.

View Article and Find Full Text PDF

Matrix vesicle-inspired delivery system based on nanofibrous chitosan microspheres for enhanced bone regeneration.

Mater Today Bio

February 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.

Inspired by the initial mineralization process with bone matrix vesicles (MVs), this study innovatively developed a delivery system to mediate mineralization during bone regeneration. The system comprises nanofibrous chitosan microspheres (NCM) and poly (allylamine hydrochloride)-stabilized amorphous calcium phosphate (PAH-ACP), which is thereafter referred to as NCMP. NCM is synthesized through the thermal induction of chitosan molecular chains, serving as the carrier, while PAH-ACP functions as the mineralization precursor.

View Article and Find Full Text PDF

Osteochondral damage, caused by trauma, tumors, or degenerative diseases, presents a major challenge due to the limited self-repair capacity of the tissue. Traditional treatments often result in significant trauma and unpredictable outcomes. Recent advances in bone/cartilage tissue engineering, particularly in scaffold materials and fabrication technologies, offer promising solutions for osteochondral regeneration.

View Article and Find Full Text PDF

The necessity to mitigate the intrinsic issues associated with tissue or organ transplants, in order to address the rising prevalence of diseases attributable to increased life expectancy, provides a rationale for the pursuit of innovation in the field of biomaterials. Specifically, biopolymeric aerogels represent a significant advancement in the field of tissue engineering, offering a promising solution for the formation of temporary porous matrices that can replace damaged tissues. However, the functional characteristics of these materials are inadequate, necessitating the implementation of matrix reinforcement methods to enhance their performance.

View Article and Find Full Text PDF

The present experiment aimed to formulate four ointments that included mixtures of plant extracts (, , , and ), apitherapy products (honey, propolis, and apilarnil) and natural polymers (collagen, chitosan, and the lyophilisate of egg white) in an ointment base. : In order to investigate the therapeutic properties of the ointments, experimental in vivo injury models (linear incision, circular excision, and thermal burns) were performed on laboratory animals, namely Wistar rats. The treatment was applied topically, once a day, for 21 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!