The aims of the current study were to develop insulin-loaded nanoparticles comprised of various polymers at different compositions, and to evaluate their ability to lower blood glucose levels in diabetic rats following subcutaneous and oral administrations. Several combinations of natural and synthetic polymers have been utilized for preparation of nanoparticles including, chitosan, alginate, albumin and Pluronic. Nanosized (170 nm-800 nm) spherical particles of high encapsulation efficiency (15-52%) have been prepared. Composition and ratios between the integrated polymers played a pivotal role in determining size, zeta potential, and hypoglycemic activity of particles. After subcutaneous and oral administration in diabetic rats, some of the insulin-loaded nanoparticles were able to induce much higher hypoglycemic effect as compared to the unloaded free insulin. For instance, subcutaneous injection of nanoparticles comprised of chitosan combined with sodium tripolyphosphate, Pluronic or alginate/calcium chloride, resulted in comparable hypoglycemic effects to free insulin, at two-fold lower dose. Nanoparticles were well-tolerated after oral administration in rats, as evidenced by by measuring levels of alanine aminotransferase, aspartate aminotransferases, albumin, creatinine and urea. This study indicates that characteristics and delivery efficiency of nanomaterials can be controlled utilizing several natural/synthetic polymers and by fine-tuning of combination ratio between polymers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10837450.2020.1832117 | DOI Listing |
J Pestic Sci
November 2024
Graduate School of Agricultural and Life Sciences, The University of Tokyo.
The chemical synthesis of biologically active natural products has diverse objectives and missions, including 1) determining the structures of the natural products, 2) providing synthetic samples for studying the activity and function, 3) providing a basis for applied research on these compounds, . I have studied various biologically active natural products and conducted synthetic studies on these compounds with various objectives. In this review, I present the results of my research, focusing on natural products with potential as agrochemicals.
View Article and Find Full Text PDFWorld J Gastroenterol
January 2025
Department of Internal Medicine, Mixed Hospital of Laghouat, Laghouat Faculty of Medicine, Amar Telidji University, Laghouat 03000, Algeria.
Liver cancer remains a significant global health challenge, characterized by high incidence and mortality rates. Despite advancements in medical treatments, the prognosis for liver cancer patients remains poor, highlighting the urgent need for novel therapeutic approaches. Traditional Chinese medicine (TCM), particularly (CB), has shown promise in addressing this need due to its multi-target therapeutic mechanisms.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Department of Haematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China.
Background: Methicillin-resistant (MRSA) poses a significant challenge in clinical environments due to its resistance to standard antibiotics. Protein A (SpA), a crucial virulence factor of MRSA, undermines host immune responses, making it an attractive target for vaccine development. This study aimed to identify potential epitopes within SpA that could elicit robust immune responses, ultimately contributing to the combat against multidrug-resistant (MDR) MRSA.
View Article and Find Full Text PDFHeliyon
January 2025
Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Complex Cibinong Science Center-BRIN, Cibinong, 16911, Jawa Barat, Indonesia.
The escalating concerns about the environmental and health impacts of synthetic pesticides have intensified the search for sustainable and effective alternatives. Cinnamon oil, derived from the bark of Cinnamomum species, has emerged as a promising candidate in this arena due to its potent biopesticidal properties. This review explores the multifaceted role of cinnamon oil in agricultural pest management, emphasizing its potential to contribute significantly to food security.
View Article and Find Full Text PDFACS Sustain Resour Manag
January 2025
Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, BOKU University, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria.
Tremendous quantities of textile waste generated and primarily landfilled annually represent a huge risk of contaminating the environment, together with loss of valuable resources. Especially, blended fabrics further pose a challenge for recycling and valorization strategies, while enzymatic hydrolysis offers a highly specific and environmentally friendly solution. In this study, we demonstrate that proteases specifically hydrolyze the wool components in blends with polyester, allowing recovery of pure polyester fibers as well as amino acids and peptides as platform molecules for further valorization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!