A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ocular toxicology: synergism of UV radiation and benzalkonium chloride. | LitMetric

Ocular toxicology: synergism of UV radiation and benzalkonium chloride.

Cutan Ocul Toxicol

Centre for Ocular Research & Education, School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada.

Published: December 2020

Purpose: To investigate the combined toxic effect of ultraviolet (UV) radiation and benzalkonium chloride (BAK), a common preservative in ophthalmic eye drops, on human corneal epithelial cells (HCEC).

Methods: Cultured HCEC were exposed to different combined and separate UV (280-400 nm) and BAK solutions at relevant human exposure levels. Human exposure to UV can occur before, during, or after eye drop installation, therefore, three different orders of ocular exposures were investigated: UV and BAK at the same time, UV first followed by BAK, and BAK first followed by UV. Control treatments included testing HCEC exposed to BAK alone and also HCEC exposed to UV alone. In addition, phosphate-buffered saline (PBS) was used as a negative control. After exposure, cell metabolic activity of the cultures was measured with PrestoBlue, and cell viability was determined using confocal microscopy with viability dyes.

Results: BAK alone reduced the metabolic activity and cell viability of HCEC in a dose- and time-dependent manner. UV alone at a low dose (0.17 J/cm) had little toxicity on HCEC and was not significantly different from PBS control. However, UV plus BAK showed combined effects that were either greater than (synergistic) or equal to (additive) the sum of their individual effects. The synergistic effects occurred between low dose UV radiation (0.17 J/cm) and low concentrations of BAK (0.001%, 0.002%, 0.003%, and 0.004%).

Conclusions: This investigation determined that at relevant human exposure levels, the combination of UV radiation (280-400 nm) and BAK can cause synergistic and additive toxic effects on human corneal epithelial cells. This finding highlights the importance of considering the combined ocular toxicity of BAK and solar radiation in the risk assessment of BAK-preserved ophthalmic solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15569527.2020.1833027DOI Listing

Publication Analysis

Top Keywords

hcec exposed
12
human exposure
12
bak
11
radiation benzalkonium
8
benzalkonium chloride
8
human corneal
8
corneal epithelial
8
epithelial cells
8
280-400 nm bak
8
relevant human
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!