Increasingly strict regulations, as well as an increased public awareness, are forcing industry, including the foundry industry, to develop new binders for molding sands, which, while being more environmentally friendly, would simultaneously ensure a high quality of castings. Until recently, binders based on synthetic resins were considered to be such binders. However, more accurate investigations indicated that such molding sands subjected to high temperatures of liquid metal generated several harmful, even dangerous substances (carcinogenic and/or mutagenic) from the benzene, toluene, ethylbenzene and xylenes (BTEX) and polycyclic aromatic hydrocarbons groups (PAHs). An assessment of the most widely used molding sands technologies at present with organic binders (synthetic resins) from the no-bake group (furan no-bake and phenolic-ester no-bake) and their harmfulness to the environment and work conditions is presented in this paper. In the first stage of this research, gases (from the BTEX and PAHs groups) emitted when the tested molds were poured with liquid cast iron at 1350 °C were measured (according to the authors' own method). The second stage consisted of measuring the emission of gases released by binders subjected to pyrolysis (the so-called flash pyrolysis), which simulated the effects occurring on the boundary: liquid metal/molding sand. The gases emitted from the tested binders indicated that, in both cases, the emission of harmful and dangerous substances (e.g., benzene) occurs, but, of the given binder systems, this emission was lower for the phenolic-ester no-bake binder. The obtained emission factors of BTEX substances show higher values for furan resin compared to formaldehyde resin; for example, the concentration of benzene per 1 kg of binder for furan no-bake (FNB) was 40,158 mg, while, for phenol-formaldehyde no-bake (PFNB), it was much lower, 30,911 mg. Thus, this system was more environmentally friendly.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7578934 | PMC |
http://dx.doi.org/10.3390/ma13194395 | DOI Listing |
Sensors (Basel)
December 2024
Faculty of Engineering Science, University of Bayreuth, 95440 Bayreuth, Germany.
Molding sand mixtures in the foundry industry are typically composed of fresh and reclaimed sands, water, and additives such as bentonite. Optimizing the control of these mixtures and the recycling of used sand after casting requires an efficient in-line monitoring method, which is currently unavailable. This study explores the potential of an AI-enhanced electrical impedance spectroscopy (EIS) system as a solution.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland.
In the case of desulfurization and spheroization of cast iron using the in-mold method, in which the treated cast iron is poured into the reaction chamber and placed in the casting mold, the mineral raw material of the mold should support these processes. Therefore, it is important to know the physicochemical properties of the materials selected for the production of casting molds and to learn about the phenomena occurring during their pouring. The research presented in this paper was carried out on quartz, magnesite, chromite, and olivine sands.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
In the first part of this publication, selected technological and strength properties of synthetic molding sand bound with sodium bentonite with the addition of a new lustrous carbon carrier (R, R, R, W, P, Z, P, P, S, ρ) were determined. The introduction of polyethylene as a substitute for hydrocarbon resin, and shungite as a replacement for coal dust, demonstrated the achievement of an optimal molding sand composition for practical use in casting technology. The sand containing a new lustrous carbon carrier (SH/PE) demonstrates the highest permeability and flowability.
View Article and Find Full Text PDFAdv Mater
December 2024
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
The development of zero-power moisture-harvesting technology in an unsaturated atmosphere is of great significance for coping with global freshwater scarcity. Here, inspired by Pachydactylus rangei's (Namib sand gecko) ability to evade thermal radiation and harvest moisture, a power-free cooling moisture harvester (PFCMH) is fabricated using the continuous, industrialized micro-extrusion compression molding. A Luneburg lens is introduced in the PFCMH for the first time, endowing it with a high reflectivity of ≈92.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
November 2024
Advanced Institute of Technology and Innovation (IATI), 50751-310 Recife, Pernambuco, Brazil.
Background: This study aimed to produce, characterize, and apply a biosurfactant as a bioremediation tool for oil-contaminated coastal environments.
Methods: The biosurfactant was produced in a medium containing 5.0% corn steep liquor and 1.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!