Paclitaxel (PTX) is a widely used chemotherapeutic agent in the treatment of breast cancer, and resistance to PTX is a common failure of breast cancer therapy. Therefore, understanding the effective molecular targets in PTX-resistance gains importance in identifying novel strategies in successful breast cancer therapy approaches. The aim of the study was to investigate the functional role of PTX resistance on MCF-7 cell survival and proliferation related to PI3K/Akt and MAPK pathways. The generated PTX-resistant (PTX-res) MCF-7 cells showed enhanced cell survival, proliferation, and colony formation potential with decreased cell death compared to wt MCF-7 cells. PTX-res MCF-7 cells exhibited increased motility profile with EMT, PI3K/Akt, and MAPK pathway induction. According to the significant SAPK/JNK activation in PTX-res MCF-7 cells, specific c-Jun N-terminal kinase inhibitor, JNK-IN-8 is shown to suppress the migration potential of cells. Treatment of JNK inhibitor suppressed the p38 and SAPK/JNK and Vimentin expression. However, the JNK inhibitor further downregulated Wnt signaling members in PTX-res MCF-7 cells. Therefore, the JNK inhibitor JNK-IN-8 might be used as a potential therapy model to reverse PTX-resistance related to Wnt signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7599514PMC
http://dx.doi.org/10.3390/biology9100320DOI Listing

Publication Analysis

Top Keywords

mcf-7 cells
24
ptx-res mcf-7
16
inhibitor jnk-in-8
12
pi3k/akt mapk
12
wnt signaling
12
breast cancer
12
jnk inhibitor
12
specific c-jun
8
c-jun n-terminal
8
n-terminal kinase
8

Similar Publications

Although tamoxifen is commonly utilized as adjuvant therapy for Estrogen Receptor alpha (ERα)-positive breast cancer patients, approximately 30-50% of individuals treated with tamoxifen experience relapse. Therefore, it is essential to investigate additional factors besides ERα that influence the estrogen response. In this study, cross-analysis of databases were performed, and the results revealed a significant association between LINC00626 and ERα signaling as well as increased expression levels of this gene in tamoxifen-resistant cells.

View Article and Find Full Text PDF

The use of plant extracts by cancer patients during chemotherapy poses potential risks, as they may reduce the effectiveness of treatment or interact negatively with chemotherapeutic drugs. There is a lack of comprehensive studies evaluating the effects of various Centaurea spp. plant extracts on chemotherapy outcomes, highlighting the need for caution and medical supervision.

View Article and Find Full Text PDF

Anti-proliferative and photodynamic activities of Senna didymobotrya (Fresen.) leaf alkaloid-rich extracts against breast cancer cells.

BMC Complement Med Ther

January 2025

Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg, 2028, South Africa.

Background: Amongst all neoplastic diseases, breast cancer represents a major cause of death among the female population in developed and developing countries. Since alkaloid drugs are commonly used in chemotherapy to manage this disease, this study investigated the anti-proliferative effectiveness of alkaloid-rich fractions of Senna didymobotrya leaves only and with laser irradiation against MCF-7 breast cancer cells.

Method And Materials: A powdered sample of the plant leaves was extracted with 50% ethanol, filtered and their pH was adjusted with acid and base solution followed by partitioning with chloroform and ethyl acetate solvents.

View Article and Find Full Text PDF

The aim of the present study was to investigate the potential of human plasma derived exosomes for the delivery of hydroxyurea to enhance its therapeutic efficacy in breast cancer. Plasma derived exosomes were isolated using differential centrifugation along with ultrafiltration method. Hydroxyurea was encapsulated in exosomes using a freeze-thaw method.

View Article and Find Full Text PDF

Antibacterial screening of endophytic fungi from Salacia intermedia identified Diaporthe longicolla as a potent strain exhibiting good activity against multidrug-resistant Staphylococcus aureus and Pseudomonas aeruginosa, with an MIC of 39.1 µg/mL. Scale-up fermentation and chromatographic purification of this strain yielded three known compounds, which were cytochalasin J (1), cytochalasin H (2), and dicerandrol C (3), as identified by liquid chromatography - high mass resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!