EEG is a powerful and affordable brain sensing and imaging tool used extensively for the diagnosis of neurological disorders (e.g. epilepsy), brain computer interfacing, and basic neuroscience. Unfortunately, most EEG electrodes and systems are not designed to accommodate coarse and curly hair common in individuals of African descent. In neuroscience studies, this can lead to poor quality data that might be discarded in scientific studies after recording from a broader population set. In clinical diagnoses, it may lead to an uncomfortable and/or emotionally taxing experience, and, in the worst cases, misdiagnosis. Our prior work demonstrated that braiding hair in cornrows to expose the scalp at target locations leads to reduced electrode-skin impedance for existing electrodes. In this work, we design and implement novel electrodes that harness braided hair, and demonstrate that, across time, our electrodes, in conjunction with braiding, lower the impedance further, attaining 10x lower impedance than existing systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC44109.2020.9176067 | DOI Listing |
Small Methods
January 2025
Forschungszentrum Juelich GmbH, Institute of Energy Technologies, IET-4, Electrochemical Process Engineering, 52425, Juelich, Germany.
Understanding the sheet resistance of porous electrodes is essential for improving the performance of polymer electrolyte membrane (PEM) water electrolyzers and related technologies. Despite its importance, existing methods often fail to provide reliable and comprehensive data, especially for porous materials with complex morphologies and non-uniform thicknesses. This study introduces a robust and straightforward method for determining the sheet resistance of porous electrodes using a novel probe concept based on industrial printed circuit board (PCB) technology.
View Article and Find Full Text PDFChemSusChem
January 2025
Kashi University, Water Resources and Water Environment Engineering Technology Center, Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences;Xinjiang Key Laboratory of Engineering Materials and Structural Safety,School of Civil Engineering, CHINA.
Capacitive deionization (CDI) is a novel, cost-effective and environmentally friendly desalination technology that has garnered significant attention in recent years. Carbon materials, owing to their excellent properties, have become the preferred electrode materials for CDI. Given the significant differences between different ions, ion-selective performance has emerged as a critical aspect of CDI applications.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
School of Environment, Northeast Normal University, Changchun 130117, China.
The disinfection of drinking water is essential for eliminating pathogens and preventing waterborne diseases. However, this process generates various disinfection byproducts (DBPs), which toxicological research indicates can have detrimental effects on living organisms. Moreover, the safety of these DBPs has not been sufficiently assessed, underscoring the need for a comprehensive evaluation of their toxic effects and associated health risks.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
Rapid, effective, and cost-effective methods for large-scale screening of pesticide residues in the environment and agricultural products are important for assessing potential environmental risks and safeguarding human health. Here, we constructed a novel aggregation-induced emission (AIE) electrochemical aptamer (Apt) sensor based on red-emissive sulfur quantum dots (SQDs), which aimed at the rapid screening and quantitative detection of malathion. SQDs were prepared using a two-step oxidation method with good electrochemiluminescence (ECL) optical properties.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Faculty of Applied Chemistry and Materials Science, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, Sector 6, 060042 Bucharest, Romania.
A novel electrochemical detection method utilizing a cost-effective hybrid-modified electrode has been established. A glassy carbon (GC) modified electrode was tested for its ability to measure electrochemical tTG antibody levels, which are essential for diagnosing and monitoring Celiac disease (CD). Tissue transglutaminase protein biomolecules are immobilized on a quantum dots-polypyrrole nanocomposite in the improved electrode.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!