This study describes a fully automated method of expressive language assessment based on vocal responses of children to a sentence repetition task (SRT), a language test that taps into core language skills. Our proposed method automatically transcribes the vocal responses using a test-specific automatic speech recognition system. From the transcriptions, a regression model predicts the gold standard test scores provided by speech-language pathologists. Our preliminary experimental results on audio recordings of 104 children (43 with typical development and 61 with a neurodevelopmental disorder) verifies the feasibility of the proposed automatic method for predicting gold standard scores on this language test, with averaged mean absolute error of 6.52 (on a observed score range from 0 to 90 with a mean value of 49.56) between observed and predicted ratings.Clinical relevance-We describe the use of fully automatic voice-based scoring in language assessment including the clinical impact this development may have on the field of speech-language pathology. The automated test also creates a technological foundation for the computerization of a broad array of tests for voice-based language assessment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574577PMC
http://dx.doi.org/10.1109/EMBC44109.2020.9175264DOI Listing

Publication Analysis

Top Keywords

language assessment
12
children typical
8
typical development
8
vocal responses
8
language test
8
gold standard
8
language
7
automatic
4
automatic assessment
4
assessment language
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!