A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine Learning and Deep Neural Network Architectures for 3D Motion Capture Datasets. | LitMetric

Biomechanical movement data are highly correlated multivariate time-series for which a variety of machine learning and deep neural network classification techniques are possible. For image classification, convolutional neural networks have reshaped the field, but have been challenging to apply to 3D movement data with its intrinsic multidimensional nonlinear correlations. Deep neural networks afford the opportunity to reduce feature engineering effort, remove model-based approximations that can introduce systematic errors, and reduce the manual data processing burden which is often a bottleneck in biomechanical data acquisition. What classification techniques are most appropriate for biomechanical movement data? Baseline performance for 3D joint centre trajectory classification using a number of traditional machine learning techniques are presented. Our framework and dataset support a robust comparison between classifier architectures over 416 athletes (professional, college, and amateur) from five primary and six non-primary sports performing thirteen non-sport-specific movements. A variety of deep neural networks specifically intended for time-series data are currently being evaluated.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC44109.2020.9176426DOI Listing

Publication Analysis

Top Keywords

deep neural
16
machine learning
12
neural networks
12
learning deep
8
neural network
8
biomechanical movement
8
movement data
8
classification techniques
8
neural
5
data
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!