Electrical signals produced within the human body can reveal information about a wide variety of physiological processes including physical activity, cardiac health, and psychological state. The industry standard for physiological signal detection is the use of adhesive electrodes that stick onto the skin. These electrodes can irritate the skin over long periods of time and are not reusable, making them a challenge for use in operational environments. Further, these electrodes often require gel to improve signal transduction, leading to changes in signal quality as these gels dry over time. Wearable sensors for operational environments should be comfortable, unobtrusive, and non-stigmatizing while maintaining signal quality high enough to allow the detection of health states. Here, we present the development and test of a set of woven textile electrodes of 8 different sizes for chest-mounted, 3-lead electrocardiogram (ECG) monitoring. Ten male subjects were tested with each of the woven electrode sizes and with one set of adhesive electrodes. A derived performance metric and signal-to-noise ratio were calculated for each set of electrodes for comparison between them. The smallest sized electrodes were found to be least effective, while the 6 of the 8 sizes were found to be most effective.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC44109.2020.9176478DOI Listing

Publication Analysis

Top Keywords

operational environments
12
electrocardiogram ecg
8
electrodes
8
adhesive electrodes
8
signal quality
8
woven electrocardiogram
4
ecg electrodes
4
electrodes health
4
health monitoring
4
monitoring operational
4

Similar Publications

Designer Organs: Ethical Genetic Modifications in the Era of Machine Perfusion.

Annu Rev Biomed Eng

January 2025

1Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;

Gene therapy is a rapidly developing field, finally yielding clinical benefits. Genetic engineering of organs for transplantation may soon be an option, thanks to convergence with another breakthrough technology, ex vivo machine perfusion (EVMP). EVMP allows access to the functioning organ for genetic manipulation prior to transplant.

View Article and Find Full Text PDF

Background: Laparoscopic surgery training is a demanding process requiring technical and nontechnical skills. Surgical training has evolved from traditional approaches to the use of immersive digital technologies such as virtual, augmented, and mixed reality. These technologies are now integral to laparoscopic surgery training.

View Article and Find Full Text PDF

Changeover method for biosafety cabinets using ozone gas.

PLoS One

January 2025

Center for Stem Cell and Regenerative Medicine, Institute of Science Tokyo, Bunkyo-ku, Tokyo, Japan.

This study evaluated the effectiveness of a biosafety cabinet equipped with an ozone generator, particularly during the transition periods between the production of cell products. As living cell products cannot undergo sterilization, maintaining an aseptic manufacturing environment is paramount. Raw materials, often derived from human tissues, are frequently contaminated with various resident bacteria, necessitating environmental resets after each process.

View Article and Find Full Text PDF

Oil fields located in cold environments and deep-sea locations often face challenges with paraffin wax buildup in pipelines during long-distance crude oil transportation. Various strategies have been employed to address this issue, with chemical methods being the most effective and economical. However, traditional chemical inhibitors present problems due to their high toxicity and low biodegradability, leading to increased operational costs and environmental concerns.

View Article and Find Full Text PDF

The deammonification process is an efficient alternative to remove nitrogen from wastewater with a low carbon/nitrogen ratio. However, the reactor configuration and operational factors pose challenges for applications in treatment systems to remove nitrogen from municipal and industrial wastewater on a large scale. To address this gap, this study evaluated a new deammonification strategy using a single-stage membrane aerated biofilm reactor (MABR), operated with continuous flow, under different hydraulic retention times (HRT) in the post-treatment of poultry slaughterhouse wastewater with a low nitrogen load, similar to domestic wastewater.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!