In this report, we introduce a flexible board combining a custom switching circuit and 16 integrated antennas for a time-domain ultrawideband radar for breast health monitoring in one device. The goal of this study is to assess the suitability of the flexible prototype for tumor detection using carbon-polyurethane experimental breast models and comparing the performance to an earlier prototype with a rigid switching circuit and 16 separate antennas. The flexible antenna array allows direct contact with the patient skin while reducing the number of RF and DC cables needed in the previously reported system. We evaluate that the introduced flexible board successfully transmits and receives the microwave signals, and isolates tumor responses using a simple method. However, we observe that the board exhibits an early signal in the recordings of all antenna pairs which corresponds to direct cross-talk on the board and is not part of the signal that has passed through the phantom.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC44109.2020.9176857 | DOI Listing |
Sensors (Basel)
January 2025
Department of Civil Environmental and Mechanical Engineering, University of Trento, 38123 Trento, Italy.
The present study proposes an L-shaped coplanar strip dipole antenna for sensing the presence of adulterants in liquid food samples. The proposed antenna dimensions are optimized using ANSYS HFSS, and a prototype is fabricated and validated. The sensing region is optimized based on the current distribution and measured reflection coefficients.
View Article and Find Full Text PDFMicrosyst Nanoeng
January 2025
School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, 100192, Beijing, China.
Flexible electromagnetic metamaterials are a potential candidate for the ideal material for electromagnetic control due to their unique physical properties and structure. Flexible electromagnetic metamaterials can be designed to exhibit specific responses to electromagnetic waves within a particular frequency range. Research shows that flexible electromagnetic metamaterials exhibit significant electromagnetic control characteristics in microwave, terahertz, infrared and other frequency bands.
View Article and Find Full Text PDFJ Exp Biol
January 2025
Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, F-75005, Paris, France.
As in other animals, insects can modulate their odor-guided behaviors, especially sexual behavior, according to environmental and physiological factors such as the individual's nutritional state. This behavioral flexibility results from modifications of the olfactory pathways under the control of hormones. Most studies have focused on the central modulation of the olfactory system and less attention has been paid to the peripheral olfactory system.
View Article and Find Full Text PDFNat Commun
January 2025
Advanced Manufacturing and Metamaterials Laboratory, Department of Material Science and Engineering, University of California, Berkeley, CA, USA.
The demand for lightweight antennas in 5 G/6 G communication, wearables, and aerospace applications is rapidly growing. However, standard manufacturing techniques are limited in structural complexity and easy integration of multiple material classes. Here we introduce charge programmed multi-material additive manufacturing platform, offering unparalleled flexibility in antenna design and the capability for rapid printing of intricate antenna structures that are unprecedented or necessitate a series of fabrication routes.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Department of ECE, Centre for IoT and AI (CITI), KPR Institute of Engineering and Technology, Coimbatore 641 407, India.
Wearable communication technologies necessitate antenna designs that harmonize ergonomic compatibility, reliable performance, and minimal interaction with human tissues. However, high specific absorption rate (SAR) levels, limited radiation efficiency, and challenges in integration with flexible materials have significantly constrained widespread deployment. To address these limitations, this manuscript introduces a novel wearable cavity-backed substrate-integrated waveguide (SIW) antenna augmented with artificial magnetic conductor (AMC) structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!