Skin hydration is crucial for overall skin health. Maintaining skin hydration levels preserves skin integrity and prevents tissue damage which can lead to several debilitating conditions. Moreover, continuous monitoring of skin hydration can contribute to the diagnosis or management of serious diseases. For instance, sugar imbalance in diabetes mellitus and kidney disease can lead to the loss of bodily fluids and cause dry skin. Therefore, continuous, accurate and non-intrusive monitoring of skin hydration would present a remarkable opportunity for maintaining overall health and wellbeing. There are various techniques to assess skin hydration. Electrical based Corneometers are currently the gold standard in clinical and non-clinical practice. However, these techniques have a number of limitations. In particular, they are costly, sizeable, intrusive, and operator dependent. Recent research has demonstrated that near infrared spectroscopy could be used as a non-intrusive alternative for the measurement of skin water content. The present paper reports the development and in-vitro validation of a noninvasive, portable, skin hydration sensor. The results indicate that the developed sensor can deliver reliable measurements of skin water content.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC44109.2020.9176619 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!