The purpose of this study was to discriminate between left- and right-hand motor imagery tasks. We recorded the brain signals from two participants using a fNIRS system and compared different feature extraction (mean, peak, minimum, skewness and kurtosis) and classification techniques (linear (LDA) and quadratic discriminant analysis (QDA), support vector machine (SVM), logistic regression, K-nearest-neighbor (KNN), and neural networks with Levenberg-Marquardt (LMA), Bayesian Regularization (BRANN) and Scaled Conjugate Gradient (SCGA) training algorithms). The results showed poor classification accuracies (<; 58%) when skewness and kurtosis were used. When mean, peak, and minimum were used as features, QDA, SVM and KNN produced higher classification accuracies relative to LDA and logistic regression. Overall, BRANN led to the highest accuracies (>98%) when mean, peak and minimum were used as features.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC44109.2020.9175808DOI Listing

Publication Analysis

Top Keywords

motor imagery
8
peak minimum
8
discrimination two-class
4
two-class motor
4
imagery fnirs
4
fnirs based
4
based brain
4
brain computer
4
computer interface
4
interface purpose
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!