Low electrode-skin impedance can be achieved if the interface has an electrolytic medium that allows the movement of ions across the interface. Maintaining good physical contact of the sensor with the skin is imperative. We propose a novel hydrophilic conductive sponge interface that encapsulates both of these fundamental concepts into an effective physical realization. Our implementation uses a hydrophilic polyurethane prepolymer doped with conductive carbon nanofibers and cured to form a flexible sponge material that conforms to uneven surfaces, for instance, on parts of the scalp with hair. Our results show that our sponges are able to stay in a hydrated state with a low electrode-skin impedance of around 5kΩ for more than 20 hours. The novelty in our conductive sponges also lies in their versatility: the carbon nanofibers make the electrode effective even when the electrode dries up. The sensors remain conductive with a skin impedance on the order of 20kΩ when dry, which is substantially lower than typical impedance of dry electrodes, and are able to extract alpha wave EEG activity in both wet and dry conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC44109.2020.9176005DOI Listing

Publication Analysis

Top Keywords

hydrophilic conductive
8
conductive sponge
8
low electrode-skin
8
electrode-skin impedance
8
carbon nanofibers
8
impedance
5
sponge sensors
4
sensors fast
4
fast setup
4
setup low
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!