Stroke is a major cause of long-term disability. Because patients recovering from stroke often perform differently in clinical settings than in their naturalistic environments, remote monitoring of motor performance is needed to evaluate the true impact of prescribed therapies. Wearable sensors have been considered as a technical solution to this problem, but most existing systems focus on measuring the amount of movement without considering the quality of movement. We present a novel method to seamlessly and unobtrusively measure the quality of individual reaching movements by leveraging a motor control theory that describes how the central nervous system plans and executes movements. We trained and evaluated our system on 19 stroke survivors to estimate the Functional Ability Scale (FAS) of reaching movements. The analysis showed that we can estimate the FAS scores of reaching movements, with some confusion between adjacent scores. Furthermore, we estimated the average FAS scores of subjects with a normalized root mean square error (NRMSE) of 22.5%. Though our model's high error on two severe subjects influenced our overall estimation performance, we could accurately estimate scores in most of the mild-to-moderate subjects (NRMSE of 13.1% without the outliers). With further development and testing, we believe the proposed technique can be applied to monitor patient recovery in home and community settings.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC44109.2020.9175708DOI Listing

Publication Analysis

Top Keywords

reaching movements
12
fas scores
8
estimating quality
4
reaching
4
quality reaching
4
reaching movement
4
movement wrist-worn
4
wrist-worn inertial
4
inertial sensor
4
sensor stroke
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!