Time- and frequency-domain studies of EEG signals are most commonly employed to study the electrical activities of the brain in order to diagnose potential neurological disorders. In this work, we applied the global coherence approach to help estimating the neural synchrony across multiple nodes in the brain, prior and during a seizure. The ratio of the largest eigenvalue to the sum of the eigenvalues of the cross spectral matrix at a certain frequency and time allowed detecting a strong coordinated neural activity in alpha sub-band for the frontal lobe epilepsy. Kruskal Wallis test reveals that global coherence is an efficient tool before the seizure for the temporal lobe epilepsy in a wide range of frequencies from Delta to Beta sub-bands.Clinical Relevance-The work introduces global coherence as a new and efficient feature in prediction of seizure and specifically for the frontal lobe epilepsy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC44109.2020.9176486 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!