Neurovascular coupling provides valuable descriptive information about neural function and communication. In this work, we propose to objectively characterize EEG sub-band modulation in an attempt to compare with local variations of fNIRS hemoglobin concentration. First, full-band EEG signals are decomposed into five well-known frequency sub-bands: delta, theta, alpha, beta, and gamma. The temporal amplitude envelope of each sub-band is then computed via Hilbert transformation. The proposed EEG 'spectro-temporal amplitude modulation' (EEG-AM) feature measures the rate at which each sub-band is modulated. Similarities between EEG-AM features and fNIRS hemoglobin concentration are computed for four neighboring channels over the occipital area during resting-state. Experiments with a database of 29 participants show statistically significant similarities between the total hemoglobin concentration and the alpha band modulating the alpha, beta, and gamma frequencies. These results support the idea that the EEG-AM can carry hemodynamic properties.Clinical relevance- This shows that the EEG spectro-temporal amplitude modulation present similarities with the hemoglobin concentration in co-placed channels.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC44109.2020.9175409DOI Listing

Publication Analysis

Top Keywords

hemoglobin concentration
16
eeg spectro-temporal
8
spectro-temporal amplitude
8
amplitude modulation
8
fnirs hemoglobin
8
alpha beta
8
beta gamma
8
eeg
5
amplitude
4
modulation measurement
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!