Parylene-C has been used as a substrate and encapsulation material for many implantable medical devices. However, to ensure the flexibility required in some applications, minimize tissue reaction, and protect parylene from degradation in vivo an additional outmost layer of polydimethylsiloxane (PDMS) is desired. In such a scenario, the adhesion of PDMS to parylene is of critical importance to prevent early failure caused by delamination in the harsh environment of the human body. Towards this goal, we propose a method based on creating chemical covalent bonds using intermediate ceramic layers as adhesion promoters between PDMS and parylene.To evaluate our concept, we prepared three different sets of samples with PDMS on parylene without and with oxygen plasma treatment (the most commonly employed method to increase adhesion), and samples with our proposed ceramic intermediate layers of silicon carbide (SiC) and silicon dioxide (SiO). The samples were soaked in phosphate-buffered saline (PBS) solution at room temperature and were inspected under an optical microscope. To investigate the adhesion property, cross-cut tape tests and peel tests were performed. The results showed a significant improvement of the adhesion and in-soak long-term performance of our proposed encapsulation stack compared with PDMS on parylene and PDMS on plasma-treated parylene. We aim to use the proposed solution to package bare silicon chips on active implants.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC44109.2020.9175646DOI Listing

Publication Analysis

Top Keywords

pdms parylene
12
pdms
6
parylene
5
adhesion
5
pdms-parylene adhesion
4
adhesion improvement
4
improvement ceramic
4
ceramic interlayers
4
interlayers strengthen
4
strengthen encapsulation
4

Similar Publications

Silicone-based devices have the potential to achieve an ideal interface with nervous tissue but suffer from scalability, primarily due to the mechanical mismatch between established electronic materials and soft elastomer substrates. This study presents a novel approach using conventional electrode materials through multifunctional nanomesh to achieve reliable elastic microelectrodes directly on polydimethylsiloxane (PDMS) silicone with an unprecedented cellular resolution. This engineered nanomesh features an in-plane nanoscale mesh pattern, physically embodied by a stack of three thin-film materials by design, namely Parylene-C for mechanical buffering, gold (Au) for electrical conduction, and Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) for improved electrochemical interfacing.

View Article and Find Full Text PDF

We present a 100 m-thick, wireless, and battery-free implant for brain stimulation through a U.S. Food and Drug Administration-approved collagen dura substitute without contact with the brain's surface, while providing visible-light spectrum telemetry to track the onset of stimulation.

View Article and Find Full Text PDF

Complete Prevention of Bubbles in a PDMS-Based Digital PCR Chip with a Multifunction Cavity.

Biosensors (Basel)

February 2024

State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.

In a chamber-based digital PCR (dPCR) chip fabricated with polydimethylsiloxane (PDMS), bubble generation in the chambers at high temperatures is a critical issue. Here, we found that the main reason for bubble formation in PDMS chips is the too-high saturated vapor pressure of water at an elevated temperature. The bubbles should be completely prevented by reducing the initial pressure of the system to under 13.

View Article and Find Full Text PDF

We present the design, fabrication, and in vivo testing of an ultra-thin (100 μm) wireless and battery-free implant for stimulation of the brain's cortex. The implant is fabricated on a flexible and transparent parylene/PDMS substrate, and it is miniaturized to dimensions of 15.6 × 6.

View Article and Find Full Text PDF

Synthesis of a smooth conductive film over an elastomer is vital to the development of flexible optics and wearable electronics, but applications are hindered by wrinkles and cracks in the film. To date, a large-scale wrinkle-free film in an elastomer has yet to be achieved. We present a robust method to fabricate wrinkle-free, stress-free, and optically smooth thin film in elastomer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!