Multisensory integration is the process by which information from different sensory modalities is integrated by the nervous system. Understanding this process is important not only from a basic science perspective but also for translational reasons, e.g. for the development of closed-loop neural prosthetic systems. Here we describe a versatile virtual reality platform which can be used to study the neural mechanisms of multisensory integration for the upper limb and could potentially be incorporated into systems for training of robust neural prosthetic control. The platform involves the interaction of multiple computers and programs and allows for selection of different avatar arms and for modification of a selected arm's visual properties. The system was tested with two non-human primates (NHP) that were trained to reach to multiple targets on a tabletop. Reliability of arm visual feedback was altered by applying different levels of blurring to the arm. In addition, tactile feedback was altered by adding or removing physical targets from the environment. We observed differences in movement endpoint distributions that varied between animals and visual feedback conditions, as well as across targets. The results indicate that the system can be used to study multisensory integration in a well-controlled manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC44109.2020.9175439 | DOI Listing |
Commun Biol
January 2025
Department of Neurology, Peking University First Hospital, Beijing, People's Republic of China.
Persistent Postural-Perceptual Dizziness (PPPD) is a common cause of chronic vestibular syndrome. Although previous studies have identified central abnormalities in PPPD, the specific neural circuits and the alterations in brain network topological properties, and their association with dizziness and postural instability in PPPD remain unclear. This study includes 30 PPPD patients and 30 healthy controls.
View Article and Find Full Text PDFBiomedicines
January 2025
IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy.
: Dementia leads to cognitive decline, affecting memory, reasoning, and daily activities, often requiring full-time care. Multisensory stimulation (MSS), combined with cognitive tasks, can slow this decline, improving mood, communication, and overall quality of life. This systematic review aims to explore methods that utilize MSS in the rehabilitation of patients with dementia.
View Article and Find Full Text PDFCurr Issues Mol Biol
January 2025
Department of Precision and Regenerative Medicine, School of Medicine, University of Bari Aldo Moro, P.za G. Cesare 11, 70100 Bari, Italy.
Sensory processing abnormalities have been noted since the first clinical description of autism in 1940. However, it was not until the release of the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) in 2013 that sensory challenges were considered as symptoms of autism spectrum disorder (ASD). Multisensory processing is of paramount importance in building a perceptual and cognitive representation of reality.
View Article and Find Full Text PDFCommun Biol
January 2025
Western Institute for Neuroscience, Western University, London, ON, Canada.
Our brain seamlessly integrates distinct sensory information to form a coherent percept. However, when real-world audiovisual events are perceived, the specific brain regions and timings for processing different levels of information remain less investigated. To address that, we curated naturalistic videos and recorded functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) data when participants viewed videos with accompanying sounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!