Face to face communication is interactive, and involves continuous feedforward and feedback of information, thoughts, and feelings to the opposite party. To accurately assess the neural processing underlying these interactions, synchronous and simultaneous recording of the brain activity from both parties is needed, a method known as hyperscanning. Here, we investigated the neural processing underlying nonverbal face-to-face communication using a magnetoencephalographic (MEG) hyperscanning system, comprising two fiber optically connected MEGs. Eight pairs of subjects participated. Each individual in each pair viewed a combined 80 randomized 20 s trials of 40 real-time and 40 recorded (hereafter, real and simulated, respectively) videos of the opposite party's face. Non-verbal communication through actions such as gaze, eye blinks, and facial expression was intrinsically only possible during real videos. After each trial, subjects individually subjectively discriminated whether the viewed video was real or simulated. Overall subjective discrimination accuracies were slightly but significantly above chance level. Statistical analysis of brain activity revealed a significant three way interaction between theta-band rhythm amplitude, video type, and subjective discrimination response in the right frontal cortex. Additionally, when subjects responded that videos were simulated, theta activity was significantly lower for real videos compared with simulated videos (p = 0.01). This result not only demonstrates the importance of right frontal theta activity during non-verbal communication, but also indicates the existence of unconscious, semi-automated neural processing during non-verbal communication that underlies one's ability to subjectively discriminate whether or not the opposite party is real.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC44109.2020.9176538 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!