Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
With several initiatives well underway towards amassing large and high-quality population-based neuroimaging datasets, deep learning is set to push the boundaries of what is possible in classification and prediction in neuroimaging studies. This includes those that derive increasingly popular structural connectomes, which map out the connections (and their relative strengths) between brain regions. Here, we test different Convolutional Neural Network (CNN) models in a benchmark sex prediction task in a large sample of N=3,152 structural connectomes acquired from the UK Biobank, and compare results across different connectome processing choices. The best results (76.5% test accuracy) were achieved using Fractional Anisotropy (FA) weighted connectomes, without sparsification, and with a simple weight normalisation through division by the maximum FA value. We also confirm that for structural connectomes, a Graph CNN approach, the recently proposed BrainNetCNN, outperforms an image-based CNN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC44109.2020.9175596 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!