Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The difficulty of applying deep learning algorithms to biomedical imaging systems arises from a lack of training images. An existing workaround to the lack of medical training images involves pre-training deep learning models on ImageNet, a non-medical dataset with millions of training images. However, the modality of ImageNet's dataset samples consisting of natural images in RGB frequently differs from the modality of medical images, consisting largely of images in grayscale such as X-ray and MRI scan imaging. While this method may be effectively applied to non-medical tasks such as human face detection, it proves ineffective in many areas of medical imaging. Recently proposed generative models such as Generative Adversarial Networks (GANs) are able to synthesize new medical images. By utilizing generated images, we may overcome the modality gap arising from current transfer learning methods. In this paper, we propose a training pipeline which outperforms both conventional GAN-synthetic methods and transfer learning methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC44109.2020.9175392 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!