There is growing evidence that the use of stringent and dichotomic diagnostic categories in many medical disciplines (particularly 'brain sciences' as neurology and psychiatry) is an oversimplification. Although clear diagnostic boundaries remain useful for patients, families, and their access to dedicated NHS and health care services, the traditional dichotomic categories are not helpful to describe the complexity and large heterogeneity of symptoms across many and overlapping clinical phenotypes. With the advent of 'big' multimodal neuroimaging databases, data-driven stratification of the wide spectrum of healthy human physiology or disease based on neuroimages is theoretically become possible. However, this conceptual framework is hampered by severe computational constraints. In this paper we present a novel, deep learning based encode-decode architecture which leverages several parameter efficiency techniques generate latent deep embedding which compress the information contained in a full 3D neuroimaging volume by a factor 1000 while still retaining anatomical detail and hence rendering the subsequent stratification problem tractable. We train our architecture on 1003 brain scan derived from the human connectome project and demonstrate the faithfulness of the obtained reconstructions. Further, we employ a data driven clustering technique driven by a grid search in hyperparameter space to identify six different strata within the 1003 healthy community dwelling individuals which turn out to correspond to highly significant group differences in both physiological and cognitive data. Indicating that the well-known relationships between such variables and brain structure can be probed in an unsupervised manner through our novel architecture and pipeline. This opens the door to a variety of previously inaccessible applications in the realm of data driven stratification of large cohorts based on neuroimaging data.Clinical Relevance -With our approach, each person can be described and classified within a multi-dimensional space of data, where they are uniquely classified according to their individual anatomy, physiology and disease-related anatomical and physiological alterations.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC44109.2020.9175810DOI Listing

Publication Analysis

Top Keywords

data driven
8
unsupervised stratification
4
neuroimaging
4
stratification neuroimaging
4
neuroimaging deep
4
deep latent
4
latent embeddings
4
embeddings growing
4
growing evidence
4
evidence stringent
4

Similar Publications

Background: For process development in mammalian cell cultivations, scale-up approaches are essential. A lot of studies concern the scale transfer between different-sized stirred tank reactors. However, process development usually starts in even smaller cultivation vessels like microtiter plates or shake flasks.

View Article and Find Full Text PDF

Introduction: Psychiatric emergency departments (EDs) in France have been under pressure from several factors, exacerbated by the COVID-19 pandemic. The pandemic led to an increase in psychiatric disorders, particularly anxiety and depression, with younger people and women being most affected. The aim of this study was to provide a comprehensive description of the trends in the number of visits to the largest psychiatric emergency department in France, with a particular focus on the period preceding and following the advent of COVID-19 pandemic.

View Article and Find Full Text PDF

Alzheimer's Disease (AD) significantly aggravates human dignity and quality of life. While newly approved amyloid immunotherapy has been reported, effective AD drugs remain to be identified. Here, we propose a novel AI-driven drug-repurposing method, DeepDrug, to identify a lead combination of approved drugs to treat AD patients.

View Article and Find Full Text PDF

Deep learning classification models based on Convolutional Neural Networks (CNNs) are increasingly used in population genetic inference for detecting signatures of natural selection. Prevailing detection methods treat the design of the classifier as a discrete phase, assuming that high classification accuracy is the sole prerequisite for precise detection. This frequently steers method development toward classification-driven optimizations that can inadvertently impede detection.

View Article and Find Full Text PDF

Causality-driven candidate identification for reliable DNA methylation biomarker discovery.

Nat Commun

January 2025

The Medical Image and Health Informatics Lab, the School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.

Despite vast data support in DNA methylation (DNAm) biomarker discovery to facilitate health-care research, this field faces huge resource barriers due to preliminary unreliable candidates and the consequent compensations using expensive experiments. The underlying challenges lie in the confounding factors, especially measurement noise and individual characteristics. To achieve reliable identification of a candidate pool for DNAm biomarker discovery, we propose a Causality-driven Deep Regularization framework to reinforce correlations that are suggestive of causality with disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!