Alzheimers disease is characterized by complex changes in brain tissue including the accumulation of tau-containing neurofibrillary tangles (NFTs) and dystrophic neurites (DNs) within neurons. The distribution and density of tau pathology throughout the brain is evaluated at autopsy as one component of Alzheimers disease diagnosis. Deep neural networks (DNN) have been shown to be effective in the quantification of tau pathology when trained on fully annotated images. In this paper, we examine the effectiveness of three DNNs for the segmentation of tau pathology when trained on noisily labeled data. We train FCN, SegNet and U-Net on the same set of training images. Our results show that using noisily labeled data, these networks are capable of segmenting tau pathology as well as nuclei in as few as 40 training epochs with varying degrees of success. SegNet, FCN and U-Net are able to achieve a DICE loss of 0.234, 0.297 and 0.272 respectively on the task of segmenting regions of tau. We also apply these networks to the task of segmenting whole slide images of tissue sections and discuss their practical applicability for processing gigapixel sized images.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC44109.2020.9175832DOI Listing

Publication Analysis

Top Keywords

tau pathology
16
segmentation tau
8
brain tissue
8
neural networks
8
alzheimers disease
8
pathology trained
8
noisily labeled
8
labeled data
8
task segmenting
8
tau
5

Similar Publications

This proceedings article summarizes the inaugural "T Cells in the Brain" symposium held at Columbia University. Experts gathered to explore the role of T cells in neurodegenerative diseases. Key topics included characterization of antigen-specific immune responses, T cell receptor (TCR) repertoire, microbial etiology in Alzheimer's disease (AD), and microglia-T cell crosstalk, with a focus on how T cells affect neuroinflammation and AD biomarkers like amyloid beta and tau.

View Article and Find Full Text PDF

Nutrition: A non-negligible factor in the pathogenesis and treatment of Alzheimer's disease.

Alzheimers Dement

January 2025

Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Xicheng District, Beijing, China.

Alzheimer's disease (AD) is a degenerative disease characterized by progressive cognitive dysfunction. The strong link between nutrition and the occurrence and progression of AD pathology has been well documented. Poor nutritional status accelerates AD progress by potentially aggravating amyloid beta (Aβ) and tau deposition, exacerbating oxidative stress response, modulating the microbiota-gut-brain axis, and disrupting blood-brain barrier function.

View Article and Find Full Text PDF

Introduction: Aging adults with Down syndrome (DS) accumulate Alzheimer's disease (AD) neuropathology, including amyloid beta plaques and neurofibrillary tangles, by age 40.

Methods: We present findings from an individual with DS who remained cognitively stable despite AD neuropathology. Clinical assessments, fluid biomarkers, neuroimaging, and neuropathological examinations were conducted to characterize her condition.

View Article and Find Full Text PDF

Tau pathology in the locus coeruleus (LC) is associated with several neurodegenerative conditions including Alzheimer's disease and frontotemporal dementia. Phosphorylated tau accumulates in the LC and results in inflammation, synaptic loss, and eventually cell death as the disease progresses. Loss of LC neurons and noradrenergic innervation is thought to contribute to the symptoms of cognitive decline later in disease.

View Article and Find Full Text PDF

Background: A significant proportion of individuals maintain healthy cognitive function despite having extensive Alzheimer's disease (AD) pathology, known as cognitive resilience. Understanding the molecular mechanisms that protect these individuals can identify therapeutic targets for AD dementia. This study aims to define molecular and cellular signatures of cognitive resilience, protection and resistance, by integrating genetics, bulk RNA, and single-nucleus RNA sequencing data across multiple brain regions from AD, resilient, and control individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!