Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, we present a framework to address the augmentation of images for the rare and minor appearance of mitotic type staining patterns, for Human Epithelium Type2 (HEp-2) cell images. The identification of mitotic patterns among non-mitotic/interphase patterns is important in the process of diagnosis of various autoimmune disorders. This task leads to a pattern classification problem between mitotic v/s interphase. However, among the two classes, typically, the number of mitotic cells are relatively very less. Thus, in this work, we propose to generate synthetic mitotic samples, which can be used to augment the number of mitotic samples and balance the samples of mitotic and interphase patterns in classification paradigm. An effective feature representation is used, to validate the usefulness of the synthetic samples in classification task, along with a subjective validation done by a medical expert. The results demonstrate that the approach of generating and mingling synthetic samples with existing training data works well and yields good performance, with 0.98 balanced class accuracy (BcA) in one case, over a public dataset, i.e., UQ-SNP I3A Task-3 mitotic cell identification dataset.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC44109.2020.9175636 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!