Short-duration bursts of spontaneous activity are important markers of maturation in the electroencephalogram (EEG) of premature infants. This paper examines the application of a feature-less machine learning approach for detecting these bursts. EEGs were recorded over the first 3 days of life for infants with a gestational age below 30 weeks. Bursts were annotated on the EEG from 36 infants. In place of feature extraction, the time-series EEG is transformed into a time-frequency distribution (TFD). A gradient boosting machine is then trained directly on the whole TFD using a leave-one-out procedure. TFD kernel parameters, length of the Doppler and lag windows, are selected within a nested cross-validation procedure during training. Results indicate that detection performance is sensitive to Doppler-window length but not lag-window length. Median area under the receiver operator characteristic for detection is 0.881 (inter-quartile range 0.850 to 0.913). Examination of feature importance highlights a critical wideband region <15 Hz in the TFD. Burst detection methods form an important component in any fully-automated brain-health index for the vulnerable preterm infant.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC44109.2020.9175154DOI Listing

Publication Analysis

Top Keywords

machine learning
8
detection transient
4
bursts
4
transient bursts
4
eeg
4
bursts eeg
4
eeg preterm
4
infants
4
preterm infants
4
infants time-frequency
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!