Parkinson's disease (PD) is the second most common age-related neurodegenerative disorder after Alzheimer's disease, associated, among others, with motor symptoms such as resting tremor, rigidity and bradykinesia. At the same time, early diagnosis of PD is hindered by a high misdiagnosis rate and the subjective nature of the diagnosis process itself. Recent developments in mobile and wearable devices, such as smartphones and smartwatches, have allowed the automated detection and objective measurement of PD symptoms. In this paper we investigate the hypothesis that PD motor symptom degradation can be assessed by studying the in-meal behavior and modeling the food intake process. To achieve this, we use the inertial data from a commercial smartwatch to investigate the in-meal eating behavior of healthy controls and PD patients. In addition, we define and provide a methodology for calculating Plate-to-Mouth (PtM), an indicator that relates with the average time that the hand spends transferring food from the plate towards the mouth during the course of a meal. The presented experimental results, using our collected dataset of 28 participants (7 healthy controls and 21 PD patients), support our hypothesis. Results initially point out that PD patients have a higher PtM value than the healthy controls. Finally, using PtM we achieve a precision/recall/F1 of 0.882/0.714/0.789 towards classifying the meals from the PD patients and healthy controls.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC44109.2020.9175615DOI Listing

Publication Analysis

Top Keywords

healthy controls
16
controls patients
8
patients
5
imu sensors
4
sensors assess
4
assess motor
4
motor degradation
4
degradation patients
4
patients modeling
4
modeling in-meal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!