Functional near-infrared spectroscopy (fNIRS) provides an effective tool in neuroscience studies of cognition in infants. fNIRS signals are normally processed by applying ANOVA analysis on the grand average of the hemodynamic responses to investigate the cognitive-related differences between experimental groups. However, this averaging approach does not account for any differences in the temporal patterns of the responses. Therefore, we propose a new approach based on a combination of tensor decomposition and ANOVA. First, a four-way tensor of the hemodynamic responses is arranged as time × frequency × channel× subject and decomposed using Canonical Polyadic Decomposition (CPD). Next, ANOVA is applied to identify significant patterns between subjects. Instead of averaging, the CPD can capture the distinct patterns between groups in all the dimensions. We used fNIRS dataset of 70 infants who participated in an experiment to investigate cortical activation to an agent (i.e., mechanical claws vs. human hands) with different events (i.e., function and non-function). In the comparison with the traditional ANOVA, CPD+ANOVA identified the same significance factors. However, CPD+ANOVA discovered new information on the temporal and spatial patterns indicating a longer interval hemodynamic responses, which was missed using the traditional ANOVA. This new analysis of hemodynamic responses as captured using fNIRS will improve neuroscience and cognitive studies.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC44109.2020.9176115DOI Listing

Publication Analysis

Top Keywords

hemodynamic responses
16
tensor decomposition
8
functional near-infrared
8
near-infrared spectroscopy
8
spectroscopy fnirs
8
fnirs signals
8
anova analysis
8
traditional anova
8
fnirs
5
anova
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!