In clinical practice, heart arrhythmias are manually diagnosed by a doctor, which is a time-consuming process. Furthermore, this process is error-prone due to noise from the recording equipment and biological non-idealities of patients. Thus, an automated arrhythmia classifier would be time and cost-effective as well as offer better generalization across patients. In this paper, we propose an adversarial multitask learning method to improve the generalization of heartbeat arrythmia classification. We built an end-to-end deep neural network (DNN) system consisting of three sub-networks; a generator, a heartbeat-type discriminator, and a subject (or patient) discriminator. Each of these two discriminators had its own loss function to control its impact. The generator was "friendly" to the heartbeat-type discrimination task by minimizing its loss function and "hostile" to the subject discrimination task by maximizing its loss function. The network was trained using raw ECG signals to discriminate between five types of heartbeats - normal heartbeats, right bundle branch blocks (RBBB), premature ventricular contractions (PVC), paced beats (PB) and fusion of ventricular and normal beats (FVN). The method was tested with the MIT-BIH arrhythmia dataset and achieved a 17% reduction in classification error compared to a baseline using a fully-connected DNN classifier.Clinical Relevance-This work validates that it is possible to develop a subject-independent automated heart arrhythmia detection system to assist clinicians in the diagnosis process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC44109.2020.9175640 | DOI Listing |
PLoS One
January 2025
College of Arts, Anhui Xinhua University, Hefei, China.
To improve the expressiveness and realism of illustration images, the experiment innovatively combines the attention mechanism with the cycle consistency adversarial network and proposes an efficient style transfer method for illustration images. The model comprehensively utilizes the image restoration and style transfer capabilities of the attention mechanism and the cycle consistency adversarial network, and introduces an improved attention module, which can adaptively highlight the key visual elements in the illustration, thereby maintaining artistic integrity during the style transfer process. Through a series of quantitative and qualitative experiments, high-quality style transfer is achieved, especially while retaining the original features of the illustration.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan 570228, China.
Insect phenoloxidase, presented as an inactive precursor prophenoloxidase (PPO) in hemolymph, catalyzes melanin formation, which is involved in wound healing, pathogen killing, reversible oxygen collection during insect respiration, and cuticle and eggshell formation. Mosquitoes possess 9 to 16 PPO members across different genera, a number that is more than that found in other dipteran insects. However, the reasons for the redundancy of these PPOs and whether they have distinct biochemical properties and physiological functions remain unclear.
View Article and Find Full Text PDFJ Chin Med Assoc
September 2024
Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
Background: Many studies have reported the renal outcomes and metabolic consequences after augmentation cystoplasty (AC), however few studies have discussed changes in renal tubular function. The aim of this study was to determine the prevalence of metabolic disturbances, evaluate renal tubular function and 24-hour urine chemistry to evaluate the association between metabolic alterations and urolithiasis after AC.
Methods: We investigated serum biochemistry, blood gas, and 24-hour urinary metabolic profile of children who underwent AC between January 2000 and December 2020.
J Clin Invest
January 2025
Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, United States of America.
Eccentric contraction- (ECC) induced force loss is a hallmark of murine dystrophin-deficient (mdx) skeletal muscle that is used to assess efficacy of potential therapies for Duchenne muscular dystrophy. While virtually all key proteins involved in muscle contraction have been implicated in ECC force loss, a unifying mechanism that orchestrates force loss across such diverse molecular targets has not been identified. We showed that correcting defective hydrogen sulfide (H2S) signaling in mdx muscle prevented ECC force loss.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E3, Canada.
Restenosis remains a long-standing limitation to effectively maintain functional blood flow after percutaneous transluminal angioplasty (PTA). While the use of drug-coated balloons (DCBs) containing antiproliferative drugs has improved patient outcomes, limited tissue transfer and poor therapeutic targeting capabilities contribute to off-target cytotoxicity, precluding adequate endothelial repair. In this work, a DCB system was designed and tested to achieve defined arterial delivery of an antirestenosis therapeutic candidate, cadherin-2 (N-cadherin) mimetic peptides (NCad), shown to selectively inhibit smooth muscle cell migration and limit intimal thickening in early animal PTA models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!