Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Freezing of gait (FOG) is a sudden cessation of locomotion in advanced Parkinson's disease (PD). A FOG episode can lead to falls, decreased mobility, and decreased overall quality of life. Prediction of FOG episodes provides an opportunity for intervention and freeze prevention. A novel method of FOG prediction that uses foot plantar pressure data acquired during gait was developed and evaluated, with plantar pressure data treated as 2D images and classified using a convolutional neural network (CNN). Data from five people with PD and a history of FOG were collected during walking trials. FOG instances were identified and data preceding each freeze were labeled as Pre-FOG. Left and right foot FScan pressure frames were concatenated into a single 60x42 pressure array. Each frame was considered as an independent image and classified as Pre-FOG, FOG, or Non-FOG, using the CNN. From prediction models using different Pre-FOG durations, shorter Pre-FOG durations performed best, with Pre-FOG class sensitivity 94.3%, and specificity 95.1%. These results demonstrated that foot pressure distribution alone can be a good FOG predictor when treating each plantar pressure frame as a 2D image, and classifying the images using a CNN. Furthermore, the CNN eliminated the need for feature extraction and selection.Clinical Relevance- This research demonstrated that foot plantar pressure data can be used to predict freezing of gait occurrence, using a convolutional neural network deep learning technique. This had the added advantage of eliminating the need for feature extraction and selection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC44109.2020.9176382 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!