The brain-computer interface (BCI) based on electroencephalography (EEG) converts the subject's intentions into control signals. For the BCI, the study of motor imagery has been widely used. In recent years, a classification method based on a convolutional neural network (CNNs) has been proposed. However, most of the existing methods use a single convolution scale on CNN, and another problem that affects the results is limited training data. To solve these problems, we propose a mixed-scale CNN architecture, and a data augmentation method is used to classify the EEG of motor imagery. After classifying the BCI competition IV dataset 2b, the average classification accuracy is 81.52%. Compared with the existing methods, our method has a better classification result. This method effectively solves the problems existing in the existing CNN-based motor imagery classification methods, and it improves the classification accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC44109.2020.9176361DOI Listing

Publication Analysis

Top Keywords

motor imagery
16
data augmentation
8
existing methods
8
classification accuracy
8
classification
5
classify motor
4
imagery
4
imagery novel
4
novel cnn
4
cnn data
4

Similar Publications

Enhancing motor disability assessment and its imagery classification is a significant concern in contemporary medical practice, necessitating reliable solutions to improve patient outcomes. One promising avenue is the use of brain-computer interfaces (BCIs), which establish a direct communication pathway between users and machines. This technology holds the potential to revolutionize human-machine interaction, especially for individuals diagnosed with motor disabilities.

View Article and Find Full Text PDF

A cross-domain-based channel selection method for motor imagery.

Med Biol Eng Comput

January 2025

State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing, University, Chongqing, 400044, People's Republic of China.

Selecting channels for motor imagery (MI)-based brain-computer interface (BCI) systems can not only enhance the portability of the systems, but also improve the decoding performance. Hence, we propose a cross-domain-based channel selection (CDCS) approach, which effectively minimizes the number of EEG channels used while maintaining high accuracy in MI recognition. The EEG source imaging (ESI) technique is employed to map scalp EEG into the cortical source domain.

View Article and Find Full Text PDF

A Lightweight Network with Domain Adaptation for Motor Imagery Recognition.

Entropy (Basel)

December 2024

Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300384, China.

Brain-computer interfaces (BCI) are an effective tool for recognizing motor imagery and have been widely applied in the motor control and assistive operation domains. However, traditional intention-recognition methods face several challenges, such as prolonged training times and limited cross-subject adaptability, which restrict their practical application. This paper proposes an innovative method that combines a lightweight convolutional neural network (CNN) with domain adaptation.

View Article and Find Full Text PDF

: Parkinson's disease (PD) is a neurodegenerative disorder, characterised by cardinal motor features and a multitude of non-motor manifestations. Among them, cognitive impairment in PD has been recognised as a defined clinical entity, and it might lead to an increased risk of developing dementia. Consequently, the present review aimed to ascertain the available interventions for the training of cognitive abilities in persons with PD (PwPD).

View Article and Find Full Text PDF

Background: Decoding motor intentions from electroencephalogram (EEG) signals is a critical component of motor imagery-based brain-computer interface (MI-BCIs). In traditional EEG signal classification, effectively utilizing the valuable information contained within the electroencephalogram is crucial.

Objectives: To further optimize the use of information from various domains, we propose a novel framework based on multi-domain feature rotation transformation and stacking ensemble for classifying MI tasks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!