Leonurus japonicus (motherwort) is a traditional Chinese medicine that is widely used to treat menstrual disorders (MDs). However, the pharmacological mechanisms that underlie its clinical application remain unclear. In this study, a network pharmacology-based approach was used that integrated drug-likeness evaluation, oral bioavailability prediction, target exploration, network construction, bioinformatic annotation and molecular docking to investigate the mechanisms that underlie motherwort treatment for MDs. In total, 29 bioactive compounds were collected from 51 compounds in motherwort, which shared 17 common MDs-related targets. Network analysis indicated that motherwort played a therapeutic role in MDs treatment through multiple components that acted on multiple targets. Pathway enrichment analysis showed that the putative targets of motherwort were primarily involved in various pathways associated with the endocrine system, cancers, vascular system, and anti-inflammation process. Notably, five targets (i.e., AKT1, PTGS2, ESR1, AR and PPARG) were screened as hub genes based on a degree algorithm. Moreover, most of the bioactive components in motherwort had good binding ability with these genes, implying that motherwort could regulate their biological function. Collectively, this study elucidated the molecular mechanisms that underlay the efficiency of motherwort against MDs and demonstrated the potential of network pharmacology as an approach to uncover the action mechanism of herbal medicines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiolchem.2020.107384 | DOI Listing |
Anal Chem
January 2025
State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
Quaternary ammonium salts (QAs) are a class of highly active compounds widely used in medicine and agriculture. However, many QAs lack a conjugated system, making their recognition and quantitation challenging. Stachydrine is a representative unconjugated QA with a high content in Houtt.
View Article and Find Full Text PDFFront Genet
December 2024
School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China.
Acylation represents a pivotal biochemical process that is instrumental in the modification of secondary metabolites throughout the growth and developmental stages of plants. The BAHD acyltransferase family within the plant kingdom predominantly utilizes coenzyme A thioester as the acyl donor, while employing alcohol or amine compounds as the acceptor substrates to facilitate acylation reactions. Using bioinformatics approaches, the gene family members in the genome of () were identified and characterized including gene structure, conserved motifs, -acting elements, and potential gene functions.
View Article and Find Full Text PDFSci Rep
December 2024
College of Mechanical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, China.
The defoliation quality of mugwort defoliation equipment is an important factor to measure the defoliation efficiency, and the tensile properties of mugwort petiole will have an impact on the defoliation quality, such as the crushing rate and the abscission rate. In order to reduce the crushing rate and improve the abscission rate during mechanical harvesting of mugwort leaves, the tensile properties of mugwort petiole need to be studied. The tensile properties of mugwort petiole are closely related to its macroscopic and microscopic physicochemical parameters.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China.
Medicinal plants serve as vital resources for preventing and treating diseases, with their flowers, fruits, leaves, roots, or entire plants being utilized in the pharmaceutical industry or as direct therapeutic agents. During our investigation of microfungi associated with medicinal plants in Guizhou and Sichuan Provinces, China, several asexual and sexual fungal morphs were collected. Multi-locus phylogenetic analysis based on combined ITS, LSU, SSU and datasets revealed that these taxa are related to the family Dictyosporiaceae.
View Article and Find Full Text PDFJ Ethnopharmacol
December 2024
Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!