Genome engineering of microorganisms has become a standard in microbial biotechnologies. Several efficient tools are available for the genetic manipulation of model bacteria such as and , or the yeast . Difficulties arise when transferring these tools to nonmodel organisms. Synthetic biology strategies relying on genome transplantation (GT) aim at using yeast cells for engineering bacterial genomes cloned as artificial chromosomes. However, these strategies remain unsuccessful for many bacteria, including (MPN), a human pathogen infecting the respiratory tract that has been extensively studied as a model for systems biology of simple unicellular organisms. Here, we have designed a novel strategy for genome engineering based on the recombinase-assisted genomic engineering (RAGE) technology for editing the MPN genome. Using this strategy, we have introduced a 15 kbp fragment at a specific locus of the MPN genome and replaced 38 kbp from its genome by engineered versions modified either in yeast or in . A strain harboring a synthetic version of this fragment cleared of 13 nonessential genes could also be built and propagated . These strains were depleted of known virulence factors aiming at creating an avirulent chassis for SynBio applications. Such a chassis and technology are a step forward to build vaccines or deliver therapeutic compounds in the lungs to prevent or cure respiratory diseases in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssynbio.0c00263 | DOI Listing |
iScience
January 2025
Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Aging is accompanied by a decline in neovascularization potential and increased susceptibility to ischemic injury. Here, we confirm the age-related impaired neovascularization following ischemic leg injury and impaired angiogenesis. The age-related deficits in angiogenesis arose primarily from diminished EC proliferation capacity, but not migration or VEGF sensitivity.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, People's Republic of China.
Background: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease in which macrophages produce cytokines that enhance inflammation and contribute to the destruction of cartilage and bone. Additive Sishen decoction (ASSD) is a widely used traditional Chinese medicine for the treatment of RA; however, its active ingredients and the mechanism of its therapeutic effects remain unclear.
Methods: To predict the ingredients and key targets of ASSD, we constructed "drug-ingredient-target-disease" and protein-protein interaction networks.
PNAS Nexus
January 2025
Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
Here, we present Link-Seq, a highly efficient droplet microfluidic method for combined sequencing of antibody-encoding genes and the transcriptome of individual B cells at large scale. The method is based on 3' barcoding of the transcriptome and subsequent single-molecule PCR in droplets, which freely shift the barcode along specific gene regions, such as the antibody heavy- and light-chain genes. Using the immune repertoire of COVID-19 patients and healthy donors as a model system, we obtain up to 91.
View Article and Find Full Text PDFMitochondrial DNA B Resour
January 2025
Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Mississippi State, Mississippi, USA.
We present a novel mitogenome assembly of the Redlip Shiner, , and assemblies for the Greenhead Shiner, (Cypriniformes: Leuciscidae). Both are charismatic minnows in the taxonomic group and are endemic to the eastern United States. The genome contains 16,711bp and 16,706bp each comprising a total of 13 protein coding genes, 22 tRNAs, two rRNAs, and a control region.
View Article and Find Full Text PDFHortic Res
January 2025
College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China.
DNA methylation is a stable epigenetic mark that plays a crucial role in plant life processes. However, the specific functions of DNA methylation in grape berry development remain largely unknown. In this study, we performed whole-genome bisulfite sequencing on 'Kyoho' grape and its early-ripening bud mutant 'Fengzao' at different developmental stages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!