Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Traditional methods to measure spatio-temporal variations in biomass rely on a labor-intensive destructive sampling of the crop. In this paper, we present a high-throughput phenotyping approach for the estimation of Above-Ground Biomass Dynamics (AGBD) using an unmanned aerial system. Multispectral imagery was acquired and processed by using the proposed segmentation method called GFKuts, that optimally labels the plot canopy based on a Gaussian mixture model, a Montecarlo based K-means, and a guided image filtering. Accurate plot segmentation results enabled the extraction of several canopy features associated with biomass yield. Machine learning algorithms were trained to estimate the AGBD according to the growth stages of the crop and the physiological response of two rice genotypes under lowland and upland production systems. Results report AGBD estimation correlations with an average of r = 0.95 and R2 = 0.91 according to the experimental data. We compared our segmentation method against a traditional technique based on clustering. A comprehensive improvement of 13% in the biomass correlation was obtained thanks to the segmentation method proposed herein.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7535130 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0239591 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!