Goal: The purpose of this study was to provide an initial examination of the utility of the Beta Process - Auto Regressive - Hidden Markov Model (BP-AR-HMM) for the prior identification of gait events. A secondary objective was to determine whether the output of the model could be used for classification and prediction of locomotion states.

Methods: In this study we utilized the output of the BP-AR-HMM to develop user-independent identification of gait events and gait classification from an idealized three-dimensional acceleration signal. The input acceleration data were collected from two walking (1.4 and 1.6 ms) and two running (2.6 and 3.0 ms) steady state speeds, and during two dynamic walk to run and run to walk transitions (1.8-2.4 and 2.4-1.8 ms) on an instrumented force treadmill.

Results: The BP-AR-HMM identified 9 unique states. Of these, two states, 4 and 1, were utilized to estimate initial contact and toe off, respectively. The lead time from the first instance of state 4 to initial contact was 0.13 ± 0.02 s. Similarly, the first instance of state 1 occurred 0.14 ± 0.03 s before toe off. Two other states (3 and 7) were examined for possible utilization in a probabilistic model for the prediction of pending locomotion state transitions.

Conclusion: The identification of gait events prior to their occurrence by the BP-AR-HMM appears to be an approach that can minimize the quantity of sensor data in an offline approach. Furthermore, there is evidence it could also be used as a basis to build a probabilistic model to estimate locomotion transitions.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2020.3028827DOI Listing

Publication Analysis

Top Keywords

gait events
16
identification gait
12
sensor data
8
initial contact
8
instance state
8
probabilistic model
8
gait
5
user independent
4
independent estimations
4
estimations gait
4

Similar Publications

Portable monitoring devices based on Inertial Measurement Units (IMUs) have the potential to serve as quantitative assessments of human movement. This article proposes a new method to identify the optimal placements of the IMUs and quantify the smoothness of the gait. First, it identifies gait events: foot-strike (FS) and foot-off (FO).

View Article and Find Full Text PDF

A novel approach to assess coordination in people with transtibial amputations using continuous and event relative phase.

J Biomech

January 2025

UNC-NC State Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 1407, Engineering Building III, 1840 Entrepreneur Drive, Raleigh, NC 27695, USA. Electronic address:

Continuous relative phase (CRP) quantifies coordination for cyclic motions as the difference in the phase portrait locations between its constituent coordinates and has been widely used in populations with neuromuscular impairments. Continuous analyses, like statistical parameter mapping (SPM), provide greater resolution than traditional techniques that first compress CRP across a section of the cycle to a single point, like mean average relative phase (MARP). However, both analyses neglect the effect of intermediate event timing (e.

View Article and Find Full Text PDF

A synchronized event-cue feedback loop integrating a 3D printed wearable flexible sensor-tactor platform.

Biosens Bioelectron

January 2025

Department of Physics, Virginia Commonwealth University, Richmond, VA, 23284, USA; Institute for Sustainable Energy and Environment, Virginia Commonwealth University, Richmond, VA, 23284, USA. Electronic address:

Wearable devices designed for the somatosensory system aim to provide event-cue feedback electronics and therapeutic stimulation to the peripheral nervous system. This prompts a neurological response that is relayed back to the central nervous system. Unlike virtual reality tools, these devices precisely target peripheral mechanoreceptors by administering specific stimuli.

View Article and Find Full Text PDF

Objective: Determining the optimal osteotomy length for patients with unilateral Crowe-IV developmental dysplasia of the hip undergoing subtrochanteric osteotomy remains challenging due to the significant variability in pelvic and spinal alignment. Incorrect osteotomy length, compounded by pelvic or spinal tilt, can adversely affect postoperative gait and long-term outcomes. Therefore, this study could introduce a method to calculate the osteotomy length for patients with unilateral Crowe-IV developmental dysplasia of the hip, correcting spinal and pelvic tilt, and improving patient gait.

View Article and Find Full Text PDF

Purpose: Silent brain infarcts, sometimes appearing as incidental lacunes in patients with unknown history of vascular event, are linked to dementia, gait disturbances and depression. We observed that some cavitating lacunes were only visible on b0-diffusion-weighted-imaging (b0-DWI: T2-weighted without diffusion gradients) when T2-weighted-spin-echo (T2-SE) was unavailable. We aimed to evaluate the additional value of b0-DWI in detecting cavitating lacunes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!