Retromer is involved in epithelial Na channel trafficking.

Am J Physiol Renal Physiol

Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.

Published: November 2020

The epithelial Na channel (ENaC) located at the apical membrane in many epithelia is the rate-limiting step for Na reabsorption. Tight regulation of the plasma membrane population of ENaC is required, as hypertension or hypotension may result if too many or too few ENaCs are present. Endocytosed ENaC travels to the early endosome and is then either trafficked to the lysosome for degradation or recycled back to the plasma membrane. Recently, the retromer recycling complex, located at the early endosome, has been implicated in plasma membrane protein recycling pathways. We hypothesized that the retromer is required for recycling of ENaC. Stabilization of retromer function with the retromer stabilizing chaperone R55 increased ENaC current, whereas knockdown or overexpression of individual retromer and associated proteins altered ENaC current and cell surface population of ENaC. KIBRA was identified as an ENaC-binding protein allowing ENaC to link to sorting nexin 4 to alter ENaC trafficking. Knockdown of the retromer-associated cargo-binding sorting nexin 27 protein did not alter ENaC current, whereas CCDC22, a CCC-complex protein, coimmunoprecipitated with ENaC, and CCDC22 knockdown decreased ENaC current and population at the cell surface. Together, our results confirm that retromer and the CCC complex play a role in recycling of ENaC to the plasma membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00198.2019DOI Listing

Publication Analysis

Top Keywords

plasma membrane
16
enac current
16
enac
13
epithelial channel
8
population enac
8
early endosome
8
recycling enac
8
cell surface
8
sorting nexin
8
alter enac
8

Similar Publications

Generation and characterization of OX40-ligand fusion protein that agonizes OX40 on T-Lymphocytes.

Front Immunol

January 2025

Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.

OX40, a member of the tumor necrosis factor (TNF) receptor superfamily, is expressed on the surface of activated T cells. Upon interaction with its cognate ligand, OX40L, OX40 transmits costimulatory signals to antigen-primed T cells, promoting their activation, differentiation, and survivalprocesses essential for the establishment of adaptive immunity. Although the OX40-OX40L interaction has been extensively studied in the context of disease treatment, developing a substitute for the naturally expressed membrane-bound OX40L, particularly a multimerized OX40L trimers, that effectively regulates OX40-driven T cell responses remains a significant challenge.

View Article and Find Full Text PDF

Introduction: HIV-1 exploits dendritic cells (DCs) to spread throughout the body via specific recognition of gangliosides present on the viral envelope by the CD169/Siglec-1 membrane receptor. This interaction triggers the internalization of HIV-1 within a structure known as the sac-like compartment. While the mechanism underlying sac-like compartment formation remains elusive, prior research indicates that the process is clathrin-independent and cell membrane cholesterol-dependent and involves transient disruption of cortical actin.

View Article and Find Full Text PDF

Purpose: Mitoxantrone (MTX) is largely restricted in clinical usage due to its significant cardiotoxicity. Multiple studies have shown that an imbalance in the gut-heart axis plays an important role in the development of cardiovascular disease (CVD). We aim to explore the possible correlations between gut microbiota (GM) compositions and cardiometabolic (CM) disorder in MTX-triggered cardiotoxicity mice.

View Article and Find Full Text PDF

Pan-Cancer Analysis Identifies YKT6 as a Prognostic and Immunotherapy Biomarker, with an Emphasis on Cervical Cancer.

Onco Targets Ther

January 2025

Department of Gynecology, Sichuan Provincial Hospital of Traditional Chinese Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China.

Background: Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion is crucial for autophagy, making YKT6, a key modulator of cell membrane fusion, a potential target for cancer therapy. However, its oncogenic role across different cancers remains unclear. This study was to investigate the prognostic value and potential immunological functions of YKT6, including cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC).

View Article and Find Full Text PDF

Targeting tumor angiogenesis with safe endogenous protein inhibitors is a promising therapeutic approach despite the plethora of the first line of emerging chemotherapeutic drugs. The extracellular matrix network in the blood vessel basement membrane and growth factors released from endothelial and tumor cells promote the neovascularization which supports the tumor growth. Contrastingly, small cleaved cryptic fragments of the C-terminal non collagenous domains of the same basement membrane display antiangiogenic effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!