We performed the first direct mass measurements of neutron-rich scandium, titanium, and vanadium isotopes around the neutron number 40 at the RIKEN RI Beam Factory using the time-of-flight magnetic-rigidity technique. The atomic mass excesses of ^{58-60}Sc, ^{60-62}Ti, and ^{62-64}V were measured for the first time. The experimental results show that the two-neutron separation energies in the vicinity of ^{62}Ti increase compared to neighboring nuclei. This shows that the masses of Ti isotopes near N=40 are affected by the Jahn-Teller effect. Therefore, a development of Jahn-Teller stabilization appears below the Cr isotopes, and the systematics in Sc, Ti, and V isotopes suggest that ^{62}Ti is located close to the peak of the Jahn-Teller effect.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.125.122501DOI Listing

Publication Analysis

Top Keywords

mapping deformation
4
deformation region
4
region ^{62}ti
4
^{62}ti performed
4
performed direct
4
direct mass
4
mass measurements
4
measurements neutron-rich
4
neutron-rich scandium
4
scandium titanium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!