Wood Anomalies and Surface-Wave Excitation with a Time Grating.

Phys Rev Lett

Instituto de Telecomunicações, Insituto Superior Técnico, University of Lisbon, Avenida Rovisco Pais 1,1049-001 Lisboa, Portugal.

Published: September 2020

In order to confine waves beyond the diffraction limit, advances in fabrication techniques have enabled subwavelength structuring of matter, achieving near-field control of light and other types of waves. The price is often expensive fabrication needs and the irreversibility of device functionality, as well as the introduction of impurities, a major contributor to losses. In this Letter, we propose temporal inhomogeneities, such as a periodic drive in the electromagnetic properties of a surface which supports guided modes, as an alternative route for the coupling of propagating waves to evanescent modes across the light line, thus circumventing the need for subwavelength fabrication, and achieving the temporal counterpart of the classical Wood anomaly. We show analytically and numerically how this concept is valid for any material platform and at any frequency, and propose and model a realistic experiment in graphene to couple terahertz radiation to plasmons with unit efficiency, demonstrating that time modulation of material properties could be a tunable, lower-loss and fast-switchable alternative to the subwavelength structuring of matter for near-field wave control.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.125.127403DOI Listing

Publication Analysis

Top Keywords

subwavelength structuring
8
structuring matter
8
wood anomalies
4
anomalies surface-wave
4
surface-wave excitation
4
excitation time
4
time grating
4
grating order
4
order confine
4
confine waves
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!