We consider exciton polaritons in a zigzag chain of coupled elliptical micropillars subjected to incoherent excitation. The driven-dissipative nature of the system along with the naturally present polarization splitting inside the pillars gives rise to nonreciprocal dynamics, which eventually leads to the non-Hermitian skin effect, where all the modes of the system collapse to one edge. As a result, the polaritons propagate only in one direction along the chain, independent of the excitation position, and the propagation in the opposite direction is suppressed. The system shows robustness against disorder and, using the bistable nature of polaritons to encode information, we show one-way information transfer. This paves the way for compact and robust feedback-free one-dimensional polariton transmission channels without the need for external magnetic field, which are compatible with proposals for polaritonic circuits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.125.123902 | DOI Listing |
J Chem Phys
December 2024
School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
Effectively controlling exciton-polaritons is crucial for advancing them in optical computation. In this work, we propose utilizing the valley-selective optical Stark effect (OSE) as an all-optical way to achieve the spatiotemporal control of polariton flow. We demonstrate the polarization-selective concentration of polaritons at pre-determined locations by wavefront shaping of the polaritons through an in-plane bar-code potential induced by the OSE, which helps overcome the intra-cavity disorder in potential distribution.
View Article and Find Full Text PDFNanophotonics
April 2024
Department of Physics, Korea University, Seoul, 02841, South Korea.
Guided exciton-polariton modes naturally exist in bare transition metal dichalcogenide (TMDC) layers due to self-hybridization between excitons and photons. However, these guided polariton modes exhibit a limited propagation distance owing to the substantial exciton absorption within the material. Here, we investigated the impact of hexagonal boron nitride (hBN) layers on guided exciton-polariton modes in WS multilayers.
View Article and Find Full Text PDFNanophotonics
June 2024
Materials Structural Dynamics Laboratory, Department of Chemistry, Wayne State University, 48202, Detroit, MI, USA.
It remains unclear how the collective strong coupling of cavity-confined photons to the electronic transitions of molecular chromophore leverages the distinct properties of the polaritonic constituents for future technologies. In this study, we design, fabricate, and characterize multiple types of Fabry-Pérot (FP) mirco-resonators containing copper(II) tetraphenyl porphyrin (CuTPP) to show how cavity polariton formation affects radiative relaxation processes in the presence of substantial non-Condon vibronic coupling between two of this molecule's excited electronic states. Unlike the prototypical enhancement of Q state radiative relaxation of CuTPP in a FP resonator incapable of forming polaritons, we find the light emission processes in multimode cavity polariton samples become enhanced for cavity-exciton energy differences near those of vibrations known to mediate non-Condon vibronic coupling.
View Article and Find Full Text PDFNanophotonics
June 2024
Department of Physics and Astronomy, University of Turku, Turku, Finland.
Hybridisation of the cavity modes and the excitons to polariton states together with the coupling to the vibrational modes determine the linear optical properties of organic semiconductors in microcavities. In this article we compute the refractive index for such system using the Holstein-Tavis-Cummings model and determine then the linear optical properties using the transfer matrix method. We first extract the parameters for the exciton in our model from fitting to experimentally measured absorption of a 2,7-bis[9,9-di(4-methylphenyl)-fluoren-2-yl]-9,9-di(4-methylphenyl) fluorene (TDAF) molecular thin film.
View Article and Find Full Text PDFNanophotonics
June 2024
Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland.
Placing a material inside an optical cavity can enhance transport of excitation energy by hybridizing excitons with confined light modes into polaritons, which have a dispersion that provides these light-matter quasi-particles with low effective masses and very high group velocities. While in experiments, polariton propagation is typically initiated with laser pulses, tuned to be resonant either with the polaritonic branches that are delocalized over many molecules, or with an uncoupled higher-energy electronic excited state that is localized on a single molecule, practical implementations of polariton-mediated exciton transport into devices would require operation under low-intensity incoherent light conditions. Here, we propose to initiate polaritonic exciton transport with a photo-acid, which upon absorption of a photon in a spectral range not strongly reflected by the cavity mirrors, undergoes ultra-fast excited-state proton transfer into a red-shifted excited-state photo-product that can couple collectively with a large number of suitable dye molecules to the modes of the cavity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!