Fast deposition of thin films is essential for achieving low-cost, high-throughput phosphorescent organic light-emitting diode (PHOLED) production. In this work, we demonstrate rapid and uniform growth of semiconductor thin films by organic vapor phase deposition (OVPD). A green PHOLED comprising an emission layer (EML) grown at 50 Å/s with bis[2-(2-pyridinyl-)phenyl-](acetylacetonato)iridium(III) (Ir(ppy)(acac)) doped into 4,4'-bis(-carbazolyl)-1,1'-biphenyl (CBP) exhibits a maximum external quantum efficiency of 20 ± 1%. The morphology, charge transport properties, and radiative efficiency under optical and electrical excitation of the PHOLED EML are investigated as functions of the deposition rate both experimental and theoretical approaches. The EML shows no evidence for gas phase nucleation of the organic molecules at deposition rates as high as 50 Å/s. However, the roll-off in quantum efficiency at high current progressively increases with deposition rate due to enhanced triplet-polaron annihilation. The roll-off results from accumulation of stress within the PHOLED EML that generates a high density of defect states. The defects, in turn, act as recombination sites for triplets and hole polarons, leading to enhanced triplet-polaron annihilation at high current. We introduce a void nucleation model to describe the film morphology evolution that is observed using electron microscopy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.0c07017 | DOI Listing |
Polymers (Basel)
January 2025
Department of Physics, Washington State University, Pullman, WA 99163, USA.
This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness that is small compared with the optical skin depth to assure uniform illumination and photomechanical response throughout their volume, which differentiates these studies from most others. Polarization-dependent measurements of the photomechanical stress response are used to deconvolute the contributions of angular hole burning, molecular reorientation and photothermal heating.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institute of Nanotechnologies, Electronics and Equipment Engineering, Southern Federal University, 347922 Taganrog, Russia.
One of the challenging problems in the research and development of vibration sensors relates to the formation of Ohmic contacts for the removal of an electrical signal. In some cases, it is proposed to use arrays of carbon nanotubes (CNTs), which can serve as highly elastic electrode materials for vibration sensors. The purpose of this work is to study the effect of a current-collecting layer of CNTs grown over silicon on the properties of a lead zirconate titanate (PZT) film, which is frequently employed in mechanical vibration sensors or energy harvesters.
View Article and Find Full Text PDFMolecules
January 2025
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China.
Carbon-based nanomaterials with excellent electrical and optical properties are highly sought after for a plethora of hybrid applications, ranging from advanced sustainable energy storage devices to opto-electronic components. In this contribution, we examine in detail the dependence of electrical conductivity and the ultrafast optical nonlinearity of graphene oxide (GO) films on their degrees of reduction, as well as the link between the two properties. The GO films were first synthesized through the vacuum filtration method and then reduced partially and controllably by way of femtosecond laser direct writing with varying power doses.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Street, 87-100 Torun, Poland.
Biopolymers represent a significant class of materials with potential applications in skin care due to their beneficial properties. Resveratrol is a natural substance that exhibits a range of biological activities, including the scavenging of free radicals and anti-inflammatory and anti-aging effects. In this study, chitosan/konjac glucomannan resveratrol-enriched thin films were prepared.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China.
The global asphalt production growth rate exceeded 10% in the past decade, and over 90% of the world's road surfaces are generated from asphalt materials. Therefore, the issue of asphalt aging has been widely researched. In this study, the aging of asphalt thin films under various natural conditions was studied to prevent the distortion of indoor simulated aging and to prevent the extraction of asphalt samples from road surfaces from impacting the aged asphalt.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!