Janus Micromotors Coated with 2D Nanomaterials as Dynamic Interfaces for (Bio)-Sensing.

ACS Appl Mater Interfaces

Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, E-28871 Madrid, Spain.

Published: October 2020

In this work, we study the interaction of graphdiyne oxide (GDYO)-, graphene oxide (GO)-, or black phosphorous (BP)-wrapped Janus micromotors using a model system relying on a fluorescence-labeled affinity peptide, which is released upon specific interaction with a target Cholera Toxin B. Such ON-OFF-ON system allows mimicking similar processes occurring at (bio)-interfaces and to study the related sorption and desorption kinetics. The distinct surface properties of each nanomaterial play a critical role in the loading/release capacity of the peptide, greatly influencing the release profiles. Sorption obeys a second-order kinetic model using the two-dimensional (2D) nanomaterials in connection with micromotors, indicating a strong influence of chemisorption process for BP micromotors. Yet, release kinetics are faster for GDYO and GO nanomaterials, indicating a contribution of π and hydrophobic interactions in the probe sorption (Cholera Toxin B affinity peptide) and target probe release (in the presence of Cholera Toxin B). Micromotor movement also plays a critical role in such processes, allowing for efficient operation in low raw sample volumes, where the high protein content can diminish probe loading/release, affecting the overall performance. The loading/release capacity and feasibility of the (bio)-sensing protocol are illustrated in and bacteria cultures as realistic domains. The new concept described here holds considerable promise to understand the interaction of micromotor with biological counterparts in a myriad of biomedical and other practical applications, including the design of novel micromotor-based sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c15389DOI Listing

Publication Analysis

Top Keywords

cholera toxin
12
janus micromotors
8
affinity peptide
8
critical role
8
loading/release capacity
8
micromotors coated
4
coated nanomaterials
4
nanomaterials dynamic
4
dynamic interfaces
4
interfaces bio-sensing
4

Similar Publications

Rotaviruses, non-enveloped viruses with a double-stranded RNA genome, are the leading etiological pathogen of acute gastroenteritis in young children and animals. The P[11] genotype of rotaviruses exhibits a tropism for neonates. In the present study, a binding assay using synthetic oligosaccharides demonstrated that the VP8* protein of P[11] porcine rotavirus (PRV) strain 4555 binds to lacto-N-neotetraose (LNnT) with the sequence Galβ1,4-GlcNAcβ1,3-Galβ1,4-Glc, one of the core parts of histo-blood group antigen (HBGA) and milk glycans.

View Article and Find Full Text PDF

Developing intranasal vaccines against pandemics and devastating airborne infectious diseases is imperative. The superiority of intranasal vaccines over injectable systemic vaccines is evident, but developing effective intranasal vaccines presents significant challenges. Fusing a protein antigen with the catalytic domain of cholera toxin (CTA1) and the two-domain D of staphylococcal protein A (DD) has significant potential for intranasal vaccines.

View Article and Find Full Text PDF

Secretory diarrhea, a major global health concern, particularly among young children, is often characterized by excessive chloride secretion through the cystic fibrosis transmembrane conductance regulator (CFTR) channel. Nornidulin, a fungus-derived natural product from Aspergillus unguis, has previously been shown to inhibit cAMP-induced Cl- secretion in T84 cells (human intestinal cell lines). However, the cellular mechanism of nornidulin in inhibiting cAMP-induced Cl- secretion and its anti-secretory efficacy is still unknown especially in a human colonoid model, a preclinical model recapitulating intestinal physiology in humans.

View Article and Find Full Text PDF

Introduction: Intrapleural injections of cholera toxin B conjugated to saporin (CTB-SAP) result in selective respiratory (, phrenic) motor neuron death and mimics aspects of motor neuron disease [(, amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA)], such as breathing deficits. This rodent model allows us to study the impact motor neuron death has on the output of surviving phrenic motor neurons as well as the compensatory mechanisms that are recruited. Microglial density in the phrenic motor nucleus as well as cervical gene expression of markers associated with inflammation (.

View Article and Find Full Text PDF

A spinal neural circuit for electroacupuncture that regulates gastric functional disorders.

J Integr Med

December 2024

College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China; Institute of Health and Medicine, Hefei Comprehensive National Scicence Center, Hefei 230051, Anhui Province, China. Electronic address:

Objective: Acupuncture therapies are known for their effectiveness in treating a variety of gastric diseases, although the mechanisms underlying these effects are not fully understood. This study tested the effectiveness of electroacupuncture (EA) at acupoints Zhongwan (RN12) and Weishu (BL21) for managing gastric motility disorder (GMD) and investigated the underlying mechanisms involved.

Methods: A GMD model was used to evaluate the impact of EA on various aspects of gastric function including the amplitude of gastric motility, electrogastrogram, food intake, and the rate of gastric emptying.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!